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Abstract. On-road vehicle detection and rear-end crash prevention are
demanding subjects in both academia and automotive industry. The pa-
per focuses on monocular vision-based vehicle detection under challeng-
ing lighting conditions, being still an open topic in the area of driver
assistance systems. The paper proposes an effective vehicle detection
method based on multiple features analysis and Dempster-Shafer-based
fusion theory. We also utilize a new idea of Adaptive Global Haar-like
(AGHaar) features as a promising method for feature classification and
vehicle detection in both daylight and night conditions. Validation tests
and experimental results show superior detection results for day, night,
rainy, and challenging conditions compared to state-of-the-art solutions.
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1 Introduction

According to a recent report in 2012 by [12], rear-end crashes contribute in 33%
of collisions as the highest rate among 18 types of crash studied. By maintaining
early vehicle detection and warning, it is possible to provide more time for a dis-
tracted driver to take an appropriate safe maneuver to resolve driving conflicts,
and consequently to decrease the possibility of rear-end crashes.

Vision-based driver assistance research addresses subjects such as vehicle
detection based on analysing shadow underneath a vehicle [1, 6], stereo vision to
estimate distances between ego-vehicle (i.e. the car the system is operating in)
and obstacles [24], optical flow-based methods [2], the utilization of local binary
patterns (LBP) [15, 17], or of Haar-like features [11, 13, 26].

The use of Haar and triangle features is proposed in [7]. Reported results
indicate improvements compared to a standard detector using Haar features
only. However, no validation tests and experiments have been considered for
night conditions as well as for challenging lighting situations. Thresholding for
red and white colours [16] also appears as one option to detect vehicles’ taillights.
However, this approach only works for night conditions, and the second weakness
is that the method only works for the detection of lead vehicles which are levelled
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to the ego-vehicle; a tilted vehicle (e.g. due to a road ramp, road surface at a
curve, or when turning at a round about) cannot be detected by this approach.

Shadow based vehicle detection is discussed in [1, 6]. However, shadows only
are unreliable indicators for the existence of a vehicle. A vehicle’s shadow varies
in size and position, depending on sun position.

Stereo vision and a genetic algorithm [14], or stereo vision and 3-dimensional
(3D) features [24] take the advantage of depth information, represented in a
disparity map, and apply inverse perspective mapping. However, the reported
feature detection does not support accurate distinguishing of vehicles from other
obstacles (i.e. false-positives) at night or in complicated road scenes.

A recent proposal represents a fusion technique using radar and optical flow
information [5]. While the radar sensor can have multiple detections for the
same vehicle, the optical flow technique can only detect overtaking vehicles with
considerable velocity differences compared to the ego-vehicle.

Although we use only a monocular vision sensor for the research reported in
this paper, we introduce an accurate, real-time, and effective vehicle detection
algorithm to prevent imminent accidents in both day and night conditions. As
a fundamental idea of this paper, we hypothesize that despite of vehicles’ make,
model, or colour, all vehicles have some similar features and appearances in com-
mon, including occlusion edges between vehicle and road background, different
light reflectance patterns on the rear windshield compared to the body of a vehi-
cle, a tendency towards a rectangular shape of the vehicle, and a visible shadow
bar around the vehicle’s rear bumper;

The paper proposes a data fusion based approach using multiple clue de-
tection by a single camera sensor with substantial improvement in true-positive
detection rate, and a lower false-positive alarm rate.

Different to other work that puts more effort into a single solution for vehicle
detection, we offer a data fusion approach using a novel boosted classifier called
adaptive global Haar classification (AGHaar) in conjunction with corner and line
features to effectively detect vehicles in far and close distance as well as day and
night.

The paper is organized as follows: Application of a new variant of Haar
features for vehicle detection is introduced in Section 2. Section 3 discusses on
line and corner feature analysis for refining initial detection results. In Section 4,
a comprehensive multi-data fusion solution model is provided for robust vehicle
detection based on the Dempster-Shafer theory. Section 5 provides experimental
results, and Section 6 concludes.

2 Adaptive Global Haar Classifier

As an extension for standard Haar-like features, in this section we review on
a recently introduced idea of global Haar features [21] which will be integrated
in training phase of our vehicle classifier. We also improve our classifier to be
adaptive to intensity changes to ensure robust vehicle detection at day, night, or
challenging lighting conditions.
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Global Haar Features. Following Viola and Jones [25], Haar features are
widely used for solving various object detection problems (e.g., see [19, 26]). The
value of such a Haar feature is defined by a weighted difference of image values
in white or black adjacent rectangular patches, efficiently calculated by using an
integral image [3].

In contrast to standard Haar features that consider adjacent black and white
regions (we call them local features), here [21] as our recent work, for the first
time we introduced global Haar features, to be used in conjunction with local
features. Despite we initially used global Haar features for face detection in
noisy and challenging condition, however, these features can be utilized for many
other object detection purposes. Global Haar features provide global intensity
information in a given sliding window, which can represent, for example, nearly
uniform intensities on a road surface (i.e. when there is no other object shown in
the reference window), or a nearly constant intensity of a vehicle (i.e. if a vehicle
overlaps the reference window). Figure 1 represents the extraction of two global
Haar-features from a given standard (local) Haar feature.

Classifier’s Parameter Adaptation. Extending another recent work on eye
detection under various lighting conditions [20], we try to have our vehicle clas-
sifier to be adaptive for day and night condition.

In addition to parameters that affect the training phase of a classifier (such
as training feature set), there are parameters which need to be tuned during the
application phase. The main parameters are: sliding window size (SWS), scale
factor (SF) which specifies the rate by which SWS increases in each new iteration
of the search, and the minimum number of neighbours (MNN) which is required
to confirm multiple neighbour detections as a single object. Although most of re-
search consider some fixed optimum values for these parameters, we experienced
these parameters can be highly variable depending on the intensity changes of
road scene. In our solution we dynamically revise and change these parameters
based on road and sky intensity variation to pursue an efficient vehicle detection
both in day or night conditions; see Fig. 2 for an illustration.

Instead of assigning fixed values for SWS, SF and MNN, we decide having
those parameters to be time variant and adaptive, depending on the overall in-
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Fig. 1. Left: A sliding window with three local Haar features. Right: Extension of a
given local feature into two global features.
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tensity of current input frame and temporal information. For example for low
light conditions, the MNN should have a smaller value than for ideal lighting
conditions, because a classifier has a reduced chance of multiple object detections
in dark conditions than for day light conditions. The question to be answered re-
mains that what should be our reference for measuring the overall light intensity
in an input frame?

Figure 2 illustrates pixel sampling from expected sky and road background
regions, to estimate lighting conditions. We apply a 4-patch hybrid intensity
averaging at expected sky and road regions, shown as Sl and Sr, and Rl and
Rr; we use w/20× 20 and 20×h/20 patches where w and h is width and height
of the frame, respectively. Then, based on the identified lighting situation, we
adaptively adjust the classifier parameters for more efficient vehicle detection.

Since a strong reflection spot, street lights, or a very dark shadow may fall
in one or some of those four patches, we apply a heuristic intensity averaging
including standard mean and mode (Mo) averaging to make sure we are measuring
a balance of actual intensity in the whole scene as per below:

Is(λ) =
1

2

[(
λ · Mo(Sl) +

(1− λ)

m

m∑
i=1

Sil

)
+

λ · Mo(Sr) +
(1− λ)

n

n∑
j=1

Sjr


where Is(λ) is the hybrid intensity value of the sky region, and m and n are the
total numbers of pixels in the Sl and Sr regions.

Figure 2, on the right side, demonstrates an “acceptable” segmentation of
sky and road areas. Dark and light blue segments are detected based on mean
intensity measurements of Sl and Sr, with a variation of ±10. Similarly, the green
segments show the road surface based on Rl and Rr. In the shown example of
a night scene (bottom, left), bright pixels occur in the Sl region; this influenced
our mean-intensity measurement of the left part of the sky; consequently, dark
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Fig. 2. Dynamic averaging for ground and sky region under day or night conditions.
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blue segments (bottom, right) show regions around the street lights, instead of
being light blue as the sky in general.

However, on the other hand, measurement in Sr supported the acceptable
segmentation of the sky shown as a light-blue segment.

The mode pixel value (i.e. the pixel value with the highest frequency of repe-
tition in Sl ∪ Sr) determines which of the resulting segments (light blue or dark
blue) is a better representative of the sky intensity. By assigning λ=0.66, we
consider a double importance factor for the detected mode intensity compared
to a standard mean; this consequently reduces the negative impact of any inap-
propriate segmentation. In other words, for the night scene shown at the bottom
of Fig. 2, the final value of Is(λ) is automatically much closer to the intensity
of light blue segments rather than to that of the dark blue segments. A similar
approach is applied for road background intensity evaluation, Ir(λ), which is
shown by dark and light green segments.

As a final stage for defining the adaptive Haar-feature based detector, we
experimentally adjust ten sets of optimum values for classifier parameters SWS,
SF, and MNN based on values of Is(λ) and Ir(λ) for the upper and lower part
of the input video sequence. This parameter adaptation is then extended for the
whole intensity range of 0-255 based on a cubic interpolation, as outlined in [20].

3 Line and Corner Features

The described AGHaar classifier provides us an initial vehicle detection. Al-
though the proposed classifier clearly outperforms LBP and standard Haar clas-
sifiers, we still consider those detections by AGHaar as being vehicle candidates
or RoIs only. In order to have more accurate results (i.e. less false-positives) we
continue our evaluation by analysing line and corner features before confirming
a RoI as being a vehicle.

Horizontal Edges. Instead of (e.g.) shadow analysis like [1], we take parallel
horizontal edges into account as a more reliable feature for pointing to a possible
existence of a vehicle in a RoI. Our hypothesis is that horizontal edge features
can be perceived due to depth differences between bumper and body of a vehicle,
edges around a vehicle’s registration plate, or horizontal borders of windshields.

We apply the progressive probabilistic Hough transform (PPHT) [10] for fast
and real-time detection of horizontal lines only. The PPHT was designed follow-
ing the standard Hough transform (SHT) as introduced by Duda and Hart [4]:
a line L in the xy coordinate system can be represented by polar coordinates
(θ, ρ) as follows: ρ = x · cos θ + y · sin θ. Detected edge pixels Pi = (xi, yi) in
xy-space are transformed into curves in θρ-space, also known as Hough space,
or, in its discrete version, as accumulator space. In case of the PPHT, a voting
scheme is applied to tackle with the high computational cost of SHT. While in
SHT all edge pixels are mapped into the accumulator space, PPHT only votes
based on a fraction of randomly selected pixels. There is one voting bin for each
line candidate, and a minimum number of pixels (i.e. of votes) is considered as
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Fig. 3. Edge pixels of a sample road scene mapped into θρ-space. The accumulator
values are shown using a colour key where dark blue is for zero, red is for high values,
and light blue for low positive values.

a threshold for detecting a line. For shorter lines a higher spatial density of sup-
porting pixels is required, while for longer lines less spatial density of supporting
pixels is sufficient. Overall, the PPHT ensures much faster line detection with
results being about equal in accuracy with those obtained by SHT [8]. Figure 3
shows an accumulator space graph, obtained from a real world road scene. The
figure illustrates that high accumulator values are close to the leftmost or right-
most borders at −90◦ or +90◦. This confirms for a road scene that the number
of horizontal lines is considerably higher than for other slopes. In order to aim
for horizontal lines y ≈ const we define two ranges of interest for θ:

1. 90◦ − τ ≤ θ ≤ 90◦

2. −90◦ < θ ≤ −90◦ + τ

Note that because ρ is considered in PPHT for positive and negative values, θ
is only in the range between −90◦ to +90◦.

Mapping back from Hough space to Cartesian space, Figure 4-right shows
detected horizontal lines for the road scene already used for Figure 3.

As illustrated, we can expect detection of one or more horizontal lines per
vehicle, for any vehicle in a road scene, either for short distances or far vehicles.

Fig. 4. Horizontal line detection by our customized PPHT.
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Corner Detection. Figure 4, right, also illustrates that there might be a few
more horizontal lines which do not belong to vehicles, for example due to shadows
of vehicles, trees, clouds, or rectangular traffic signs (e.g. large boards). However,
shaded regions or traffic signs usually have a plain or simple texture. In order
to avoid false detections, we also analyse corners in the scene. Our experimental
studies clearly indicate that vehicle regions have typically a higher density of
corner points than road, sky, or other background regions (see Fig. 5). The visual
complexity of a car’s rear-view is defined by combinations of a registration plate,
taillights, a bumper, and the vehicle body. This complexity defines typically
significant corners for a vehicle, especially at regions down the rear windshield.

We decided for using the Shi-Tomasi method [23] for detecting “appropriate”
corner points due to its performance in our application context. A corner is
defined by larger intensity differences to adjacent pixels in comparison to non-
corner image regions. In this method, an m × n subwindow Wp is considered
which slides through the input image I, defined by the reference pixel p = (x, y)
in the upper left corner. (For example, m and n is chosen between 10 and 20.)
The weighted difference between window Wp and an adjacent window of the
same size, and at reference point p+ (u, v), is measured as follows:

Dp(u, v) =

m∑
i=1

n∑
j=1

wij [I(xi + u, yj + v)− I(xi, yj)]
2 (1)

where 0 ≤ u ≤ m/2 and 0 ≤ v ≤ n/2, for xi = x + i and yj = y + j; wij
are the used weights at window positions (i, j); they are either identical 1, or a
sampled Gauss function. Using the linear terms of the Taylor expansion of those
differences only, it follows that

Dp(u, v) ≈
m∑
i=1

n∑
j=1

wij [u · Ix(xi, yj) + v · Iy(xi, yj)]
2

=

m∑
i=1

n∑
j=1

wij
(
u2I2x + 2uvIxIy + v2I2y

)
(2)

where Ix and Iy stand for the derivatives of I in x− and y−direction, respectively.
By converting into matrix format, and not including arguments (xi, yj), we have
that

Dp(u, v) ≈
[
u v
]

(

m∑
i=1

n∑
j=1

wij

[
I2x IxIy
IxIy I2y

]
)

[
u
v

]
=
[
u v
]
M

[
u
v

]
(3)

where M is short for the matrix defined in Equ. (3). Let λ1 and λ2 be the
eigenvalues of M, representing the differences between original and moved win-
dow, and R = min{λ1, λ2}. Corner points are selected by comparing R with a
given threshold; if R is greater than this threshold then the centre pixel of Wp

is selected as being a corner point; see [23].
The corner points shown in Figure 5 have been detected this way. This

method provides the expected results of higher corner point densities in lower
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Fig. 5. Detected corner points are more dense in vehicle’s back-side regions.

parts of the vehicles’ rear view, especially around the registration plate, the
bumper, taillights, or tires.

4 Data Fusion and Temporal Information

The AGHaar method alone is robust enough in a majority of road scenarios but
not for challenging lighting conditions. However, in order to ensure an even more
reliable technique we apply data fusion for all the available information clues.

As possible approaches for data fusion, we considered the Bayesian or the
Dempster-Shafer [22] framework. The Bayesian method interprets weights of in-
put entities as probabilities. The Dempster-Shafer theory (also called theory of
belief, or D-S theory for short) assigns “masses” based on human expertise which
only approximate the concept of probabilities. Since the Bayesian approach is
based on “pure” statistical analysis, you also need to be “pure” (i.e. very ac-
curate) on providing all statistical data for each source of information. This,
consequently, comes with the requirement of a comprehensive initial database
analysis among a wide range of recorded videos from different roads scenes. If not
doing so, resulting inaccurate weight assignments can cause completely wrong
outcomes of data fusion [9].

The D-S theory is well-known for its effectiveness to express uncertain judg-
ments of experts by serving as an alternative method of modelling evidence and
uncertainty compared to the Bayesian probabilistic approach. The D-S theory
is based on two ideas: (1) Define a degree of belief to identify “subjective prob-
abilities” for a related question, and (2) Dempster’s rule to combine degrees of
belief from independent items of evidence.

Using D-S theory for data fusion for vehicle detection, we not only consider
two categories of “vehicle” and “no-vehicle” but also we assign a degree of belief
for an “unknown” status. Considering a mass for the “unknown” status we are
adding a safety margin to avoid potential wrong decisions. This automatically
takes us to more rational decisions based on a combination of information con-
sensus and human expertise; whereas in the Bayesian technique, we only have
two probability values (for “existing” or “not existing”), but not a combination
of both.
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Table 1. Mass assignments for three sources of information.

Status Source 1 (m1) Source 2 (m2) Source 3 (m3)
AGHaar Corner features Horizontal lines

T 75% 55%∗ 65%∗

NT 15% 15% 20%
U 10% 20% 15%

Total 100% 100% 100%

∗ Maximum mass value if features match with threshold τ .

In the considered context we experienced that a D-S theory-based fusion
approach leads to more acceptable results, especially if we have incompleteness
of information and a situation where the accuracy of each information source
cannot be assured individually.

Let C = {T,NT} be the set representing the state of vehicle detection from
each of the three available information sources described in Sections 2 and 3
(i.e. AGHaar, corner features, and horizontal lines) where T represents that
target (vehicle) is detected, and NT stands for non-target. Each element in the
power set 2C = { Ø, {T}, {NT}, {T,NT} } is considered to be a proposition
concerning the actual state of the vehicle detection system.

Based on the theory of evidence, a mass mi is assigned for each element in
2C , where 1 ≤ i ≤ 3 stands for the considered information source. Value i = 1 is
for AGHaar, i = 2 for corner features, and i = 3 for horizontal lines. Those three
functions mi are also called basic belief assignments for information sources 1,
2, and 3, satisfying mi : 2Θ → [0, 1] with the two properties

mi(Ø) = 0 and
∑
A∈2Θ

mi(A) = 1

The mass mi(A) represents the ratio of all relative and available evidences that
support the validity of state A from the ith information source.

For example, considering AGHaar as our main sources of vehicle detection,
we consider m1 (T ) = 0.75, m1 (NT ) = 0.15, and m1 (U) = 0.1 which means that
we have a belief into the true detection rate by AGHaar in 75% of all cases,
we also have a 15% belief for false detections, and have no opinion in 10% of
the cases (unknown assignment) due to lack of knowledge or incompleteness
of analysis. Table 1 summarizes the masses defined for the three information
sources.

Depending on size and distance of rectangular regions selected by AGHaar
as vehicle candidates, we expect a number of corners and horizontal lines that
fall into the lower part of the RoI if the candidate is actually a true positive (a
vehicle).

The closer to the chosen threshold τ (as defined above) the more the possi-
bility of being confirmed as a vehicle. In other words, if the numbers of detected
corners and horizontal lines are less than the defined threshold then we decrease
our level of belief by appropriately decreasing the default masses of m2 (T) and
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m3 (T), and, on the other hand, by increasing m2 (NT ) and m3 (NT ) to reject
the false candidates in the fusion process. However, m2 (U) and m3 (U) remain
unchanged.

Also, in order to prevent incorrect updates of m2 and m3 due to noise, we
apply weighted averaging on the masses by considering the masses allocated for
n (e.g., n = 5) past frames to utilize temporal information as well:

mi =

∑n
t=1 δt mi∑n
t=1 δt

(4)

In case n = 5 we choose, for example, δ5 = 0.5 and δ1 . . . δ4 are set to be 0.2.
Considering 30 frame processing per second, in our 3.2 GHz Corei7 platform,

the masses in the past few frames should remain almost close to the actual
updated values as per previous step, or just having a ‘smooth’ change. If a sudden
change happens in the current frame due to considerable noise (e.g. intense light)
then the weighted averaging contributes to the masses from temporal information
to maintain a moderated mass for the current frame.

Considering the masses mi as being the confidence in each element of 2C ,
we measure the combined confidence value m1,2,3(Z) by fusing information from
Sources 1 to 3 following Dempster’s rule of combination:

m1,2,3(Z) = (m1 ⊕m2 ⊕m3)(Z) =

∑
A∩B∩C=Z

m1(A) ·m2(B) ·m3(C)

1−
∑

A∩B∩C=∅

m1(A) ·m2(B) ·m3(C)
(5)

where ⊕ denotes the orthogonal sum which is defined by summing the mass prod-
uct over all elements in the numerator part whose intersections areA ∩B ∩ C = Z,
and the denominator applies normalization in the range of [0, 1].

5 Experimental Results

In order to validate the proposed method we used the iROADS dataset [18]
that includes a diverse set of road scenes, recorded in day, night, under various
weather and lighting conditions. Figures 6 and 7 show sample results and receiver
operating characteristic (ROC) curves for situation day. LBP based classification
shows the lowest detection rate and the highest rate of false positives. While
AGHaar alone performs better than LBP and Standard Haar detector, the
D-S fusion-based method outperforms the best results with a smaller rate of
false alarms. Figures 8 provide samples of results for rainy night conditions. In
contrast to results for situation day, for situation night the AGHaar method did
not perform visibly better than standard Haar. This is mainly due to reflections
of street lights on rain droplets (see Fig. 8, top) which lead to false alarms.
However, the D-S fusion method shows still a high true detection rate, similar to
situations day, with only a minor increase in false alarms (raised from 10 to 19)
which is a very small portion considering the total number of true detections in
our test database.
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LBP Standard Haar AGHaar

Multiple clue fusion: (A,C,H)Horizontal edgesCorner features

A

HC

Fig. 6. Vehicle detection for situation day light. Top row: Left to right: LBP based
detections, standard Haar-like classification, improved detections based on AGHaar
method. Bottom row: Left to right, Detected corner features in road scene. Horizontal
edges detected, Fusion-based detection based on AGHaar RoI, corner and edges clues.

Fig. 7. Performance evaluation for situation day.

LBP Standard Haar AGHaar

Multiple clue fusion: (A,C,H)Horizontal edgesCorner features

A

HC

Fig. 8. Vehicle detection in situation night. Description of images as in Fig. 6.



12 M. Rezaei, M. Terauchi

Fig. 9. Performance evaluation for situation night.

6 Concluding Remarks

The paper outlined an efficient proposal for monocular vehicle detection using
only camera data recorded in a driving vehicle. Experimental results proved
a superior performance based on the AGHaar classifier and multiple feature
clue fusion, compared to the well known methods of LBP or standard Haar-like
classifier.

Low computational cost of the implemented D-S fusion technique allowed us
to keep maintaining real-time processing while taking the advantages of Multi-
source data, extracted from only a single camera.

Validation tests on the comprehensive iROADS dataset also confirmed the
robustness of the method across diverse lighting and weather conditions.

Acknowledgment: The authors thank professor Reinhard Klette for discus-
sions and comments on the paper.
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