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Driving, one of our daily activities is a complex task involving a great
amount of interaction between the driver, vehicle and environment.
Drivers regularly share their attention among operating the vehicle, mon-
itoring traffic and nearby obstacles, and performing secondary tasks such
as conversing, adjusting comfort settings (e.g. temperature, radio). The
complexity of the task and uncertainty of the driving environment points
up the growing demand on automotive safety systems, which aim for a sig-
nificant contribution to the overall road safety. In this paper we implement
an applicable framework for advanced driver assistance systems based on
fuzzy logic and multi-sensor data fusion techniques to reduce the driver’s
workload and to help lessen the danger of road incidence. Therefore we
introduced a novel deployment for a network of multi-sensors such as
Radar, Laser, Ultrasound and Vision which are mounted on a host vehi-
cle with a specific tendency to degree of driver’s vigilance. The proposed
method is applied on some real driving tasks such as following and over-
taking a vehicle with a safe speed and distance. The results are improved
by a moving window filter and enriched by some MATLAB and Fuzzy
TECH simulations.

Keywords: Sensor data fusion, sensor network, driver assistance system, adaptive
cruise control.

1 INTRODUCTION

As humans and animals have evolved, they have developed the ability to use
multiple senses to help them survive. For example, assessing the quality of
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an edible substance may not be possible using only the sense of vision; the
combination of sight, touch, smell, and taste is far more effective. Similarly,
when vision is limited by structures and vegetation, the sense of hearing can
provide advanced warning of impending dangers. Thus, multisensory data
fusion is naturally performed by animals and humans to assess more accurately
the surrounding environment and to identify threats, thereby improving their
chances of survival [1,2]. That’s why in recent years, significant attention has
focused on multisensor data fusion in a wide filed of sciences.

Multisensor data fusion is a rapidly evolving research area that requires
interdisciplinary knowledge in control theory, signal processing, artificial
intelligence, probability and statistics, etc. Multisensor data fusion refers to
the synergistic combination of sensory data from multiple sensors and related
information to provide more reliable and accurate information than could be
achieved by using a single, independent sensor [3]. Actually Multisensor data
fusion is a multilevel, multifaceted process dealing with the automatic detec-
tion, association, correlation, estimation, and combination of data from single
and multiple information sources. The results of a data fusion process help
users make decisions in complicated scenarios.

Although, data fusion methods were developed primarily for military
applications, however, nowadays, these methods have been applied to civil-
ian applications, medical, robotics and intelligent transportation systems,
etc. [4]. In Vehicle Navigations, the goal is to support the human operator
in critical decision making situations or even eliminate the human operator
altogether. Such systems are only desirable if they are able to perform at least
as good as the human operator. For example fusing various sensors such as 3D

cameras, sonar sensors and millimeter wave radar has the advantage of main-
taining “higher reliability even in inclement weather or dusty conditions” [5,6].

The complexity of the driving task and uncertainty of the driving envi-
ronment make driving a very dangerous task, as according to a study in the
European member states, there are more than 1,200,000 traffic accidents a
year with over 40,000 fatalities. This fact points up the growing demand for
automotive safety systems, which aim for a significant contribution to the
overall road safety. For this reason, recently, there are an increased number of
research activities focusing on the Driver Assistance System (DAS) develop-
ment in order to reduce the driver’s workload and prevent accident driving and
several types of safety systems have therefore been proposed to help lessen
the danger and assist the driver [7]. Current technology field of the auto-
motive industry focuses on the development of active safety applications and
advanced driver assistance systems (ADAS) instead of passive safety systems.
Passive safety systems such as seatbelts and airbags provide protection in the
case of collision; more recently however, active safety systems have been
introduced to help the driver avoid collisions in the first place. We can name
some new active safety systems such as lane departure warning and rear-end
collision avoidance systems that have been introduced, recently [8,9]. These
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active safety systems are required to interact much more with the driver than
passive safety systems, creating a closed loop between driver, vehicle, and the
environment. Examples of such systems could be found in the Laboratory for
Intelligent and Safe Automobiles (LISA) [10].

Generally speaking, an Advanced Driver Assistance system (ADAS) shall
support the driver in his/her task to drive the vehicle providing additional infor-
mation or warning when encountering any dangerous situation. The system
should be equipped with various types of sensors to observer the environ-
ment around the vehicle. For example, radar and laser scanners are sensors
used to measure distance and velocity of objects, and video cameras are used
to detect the road surface and lane markings or to provide additional visual
information [11].

2 STATE OF THE ART SENSORS APPLICABLE FOR ADAS

Competing and complementing technologies in vehicular surround sensing
and surveillance that are integrated in our fusion approach in the host vehi-
cle are: LIDAR (Laser Intensity Direction And Ranging), RADAR (RAdio
Detection And Ranging), Ultrasonic, and Video cameras (based on CCD or
CMOS chips including near-infrared sensitivity) [8,21]. In order to become
more familiar with our final architecture of our proposed ADAS system, let’s
have a short description on current state of the art sensors in real world. An
intelligent system most has a multi-sensor data fusion system designed to
detect objects in front of the host car. This multi-sensor data fusion system
consists of a set of internal and external sensors from where information is
fused within a single data fusion unit.

Internal sensors give information about the host vehicle state, such as its
velocity and steering angle information while external sensors (Laser, Radar,
and image sensors) sense information external to the vehicle, such as the
detection of obstacles. The ultimate objective is to provide a safe detecting
area around the vehicle with a high degree of certainty. Figure 1 shows a
typical covering area around the host vehicle with some overlapping area for
better decision making (more details in Section 4). All the sensors and the
data fusion unit could be connected via CAN buses. A system specification of
CAN messages has been built according to external sensors constraints [12].

3 FUSION METHODOLOGY

In this research we provide a fuzzy logic algorithm to fuse and manage the
gathered data both from driver scenes (human’s sensors) and from vehicle-
mounted sensors (physical sensors). The Fuzzy Logic Supervisor (FLS) is a
steering algorithm for managing the overall direction, speed and acceleration
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FIGURE 1
Wide sensing area around the host vehicle, thanks to multi sensory.

of a vehicle during a traveling in a road [13]. Despite of public image that
may think the driver is the supervisor of the vehicle, we would like to show by
managing and fusing both the driver commands (as primary data) and physical
sensors (as auxiliary data) a well-trained FLS can be the main supervisor. Keep
in mind that the FLS action is different from autopilot and autonomous driving.
This is a new approach and a hybrid data fusion algorithm which make better
and safer performance in a vehicle driving. That means the FLS will intervene
to actuators in case of driver’s drowsiness or dangerous situations. Figure 2
shows a graphical image for our approach. Here we describe the FLS action
in detail.

FIGURE 2
Hybrid multi data fusion (Human Sensors Fusion + Physical Sensors Fusion).
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Step 1. The proposed architecture performs both the tasks of sensor validation
and sensor fusion. As depicted in Figure 2, left inputs to this architecture are
the raw data from sensor readings and the output is a corrected value after
sensor validation, time alignment and sensor fusion. This value can be used
for the FLS along with driver decisions as “brain fusion”.

Step 2. After time alignment and sensor validation we have a real value from
car sensor fusion and a real value from human senses fusion by brain. But
which of them are more important for next departure decision of the vehicle?
In this section we use a simple but more efficient weighted average fusion
method with the following formula:

x̂(k + 1) = λx̂(k) + αx1(k + 1) + βx2(k + 1) (1)

where x̂(k + 1) is the new determined value of hybrid sensor fusion to com-
mand the vehicle, x̂(k) is the previous value, x1(k + 1) is value from driver
side and x2(k+1) is the value from car sensor side. λ, α, β are the importance
factor for each term respectively, while α + β + λ = 1. After 5 hours driving
and recording more than 5000 speed samples in time intervals of 3 seconds, it
is found that mean deviation of speed at time t + 1 cannot exceed more than
%60 than the speed at time t . In other word MAX (vt+1) = ±1.6vt and at
least %40 of vehicle’s speed at time t + 1 depends on its previous speed at
time t . So we considered the constant value of 0.4 for lambda and a flexible
value for α and β; so the final equation is as:

x̂(k + 1) = 0.4x̂(k) + αx1(k + 1) + (0.6 − α)x2(k + 1) (2)

This means the FLS as a predictor make determines the next value and
decision based on the degree of driver’s awareness and sensors output simi-
larity. On the other word any perturbation in each of them, will lowers α or β

respectively. So we define 20 sub rules and 4 essential fuzzy rules as below:

• IF driver is High-aware then α is high

• IF driver is Low-aware then α is low

• IF driver is Medium-aware then α and β are medium

• IF both driver and car sensors are High-aware then α = 0.4 and β = 0.2.

We used a standard Gaussian function to form the input membership and
triangular functions for output membership function of fuzzy logic supervisor
block.

Step 3. Now, we are going for more detail. All sensor values are assigned a
confidence value. According to our need (e.g. determining next speed, direc-
tion, or braking pressure) this confidence value depends on the specific sensor
characteristics, the predicted value, and the physical limitations of the sensor
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FIGURE 3
Algorithm of fuzzy sensor validation and fusion.

value. The assignment takes place in a validation gate which is bound by the
physically possible changes of the system [14]. Elapsing the time and accord-
ing to last overall value determined by the FLS, the confidence value of each
sensor changes from 0.0 to 1.0. That means if a specific sensor value is more
similar to FLS value scope, then the confidence value increases to the limit
of 1.0 and if value gathered by a specific sensor is less similar to FLS value
scope, then it decreases to minimum confidence value of 0.0 and in this case
this sensor may be eliminated in next evolution.

The confidence value changes in a feedback system like Figure 3.

Step 4. In the case of multisensor feature-level fusion, features are extracted
from multiple sensor observations and combined into a single concatenated
feature vector that is input to FLS. Finally fusion is performed through a
weighted average of confidence values and distance measured as

Xf =
∑n

i=1 yiσ (yi)∑n
i=1 σ(yi)

(3)

where Xf is fused value, yi are Measurements and σ(yi) are Confidence
values.

Considering all mentioned relations, we have:

x̂(k + 1) = 0.4x̂(k) + αx1(k + 1) + (0.6 − α)

∑n
i=1 yiσ (yi)∑n
i=1 σ(yi)

(4)

Our approach has condensed two main benefits:

• Giving 40% importance degree to previous state in order to preventing
sudden changes for the next state of the vehicle
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• Possibility to change importance degree of gathered data from the driver
and car sensors.

That means if the driver command is more similar to the predicted value by
the FLS, so α limits to its maximum value (0.6) and if the driver commands are
illegal or not mindfully, so the control switches to sensors and β or (0.6 − α)

limits to its maximum value; all of these, direct the vehicle to a smooth and safe
driving. In next section, we provide a simulation for our method. The above
methodology is a general approach capable of adapting with any vehicle and
any sensor assembly configuration.

4 OPTIMUM SENSOR SELECTION/ASSEMBLY

Image sensors have some drawback and advantages, such as low ability of
sensing depth and higher ability of discrimination than LIDAR and radar.
Radar shows limited lateral spatial information because it is not available
at all, the field of view is narrow, or the resolution is reduced at large dis-
tances. Although LIDAR has a wide view field that solves part of the previous
problems, there are other problems such as low ability of discrimination, clus-
tering error, and recognition latency. These restrictions of the different types of
sensors cause more attention to sensor fusion for object detection and track-
ing [15]. Several researchers, has been performed various type of sensors
as well as various assembly configuration for better performance [8,7,11].
By consideration of advantages and drawback of each sensor in different
weathers and situations, here we offer an optimal sensor selection and sensor
deployment as Figure 4.

In this scenario, 16 object detecting sensors in 4 main types of state of the
art sensors are considered:

• One Long Range Radar (2nd generation long range radar by Bosch)
mounted for front monitoring (RL) and five Short Range Radar sensors
(from M/A-COM / Tyco Electronics) four of them in both sides and
one in the front (RS); Radar sensor are appropriate for both direct rang-
ing and relative speed measuring and low sensitivity to environmental
condition.

• Four Laser scanners from IBEO with broad range and wide viewing
angle and high angular accuracy, two of them in front and the others for
rear side (L).

• Three CMOS cameras INKA-NSC640PG by Aglaia GmbH two in the
side mirrors for rear and blind spot coverage and one in the middle of
the front windscreen to face forward (CL), and a short range monocular
camera for backside (CS).
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FIGURE 4
Optimal sensor selection and placement with full coverage, redundancy and sufficient overlapping
area.

• Finally two ultrasonic sensors on both sides (U) which are inexpensive
and suitable for near area around the vehicle.

The placement of these 16 object-detecting sensors is based on the
following six main functionalities required in any ADAS:

1. Adaptive cruise control (ACC): a system which measures distance and
relative velocity to objects ahead of the own vehicle by means of radar
or laser sensors [11].

2. Lane departure warning (LDW): In LDW when the vehicle starts drift-
ing off the lane without blinker, because of e.g. “micro sleep”, an
adequate warning signal is issued to the driver enabling him to prevent
an accident by steering back into the lane.

3. Lane change assistant (LCA): is a system that helps the driver to change
the lane while turning right, left or overtaking, in a safe manner.

4. Rear view (RV): used for backward driving.

5. Lane keeping assistance (LKA): is used for driving straight without
deviation of current lane.

6. Emergency Braking System (EBS): reduces the speed with a logical
deceleration in order to eliminate an unexpected obstacle or a collision.
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Besides, according to a statistical study by GIDAS German In-Depth Acci-
dent Study, “ignoring right of the way” and “inappropriate speed” are two
major factors of all road accidents and leading the ranking. That means ACC
with safe speed and overtaking by keeping right of the way may be two of
most needed driver assistance systems. Figure 5 is the summarization of this
study that can help to determine the main causes of intersection accidents [16]

Therefore “Overtaking” and “ACC” are the most important driver assis-
tance systems must be designed. Figure 6 shows active sensors needed for
“Overtaking” and “ACC and Following” schemes among the whole 16 sensors.

FIGURE 5
Distribution of main accident causes at intersections.

FIGURE 6
Eleven active sensors for lane change and overtaking (top) and five active sensors for vehicle
following (ACC) with safe distance and safe speed (bottom).
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5 FUZZY LOGIC SUPERVISOR (FLS)

In this section, we perform ACC as one of the most important driver assistance
systems through FLS. Our approach is to determine suitable speed in follow-
ing a vehicle (ACC) according to the data reading from various sensors such as
Long range radar (LRR), Short range radar (SRR), Vision and Laser in addition
to previous speed, driver’s command and degree of his/her alertness. In this
simulation the driver forces the pedal to change the speed of vehicle according
to his/her brain decision; but the FLS checks the drivers command with auxil-
iary mounted sensors data in order to have a safe action. So it may change the
final command something different to the initial driver command. Figures 7
and 8 show membership function and the 3D output graph for speed of the
vehicle in different situations based on brain and sensor fusion.

Note: In case of noticeable difference in driver commands (Brain Fusion)
versus the sensor fusion data, we use McCall and Bergasa facial processing

FIGURE 7
Input and output membership functions of FLS system.

FIGURE 8
Proposed speed by FLS according to commands from “Driver” and “Car Sensors Fusion”.
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methods [17–19] and in case of positive answer for tiredness or drowsiness
of the driver, the importance factor of the driver will decrease significantly,
especially in higher speeds. This is visible in Figure 8.

Now we continue to check the accuracy of the host vehicle in keep following
a vehicle. As mentioned before and can be seen in Figure 6 we need to fuse
five front sensors like Figure 9.

The initial system structure is defined by input and output variables with
their linguistic terms. Linguistic variables are components of fuzzy logic sys-
tems that “transform” real, crisp values, here from sensors, into linguistic
values. The output also defined by some linguistic variables but finally should
be defuzzified in to real output value, here distance (Figure 10).

FIGURE 9
Sensor fusion scheme for ACC using fuzzy logic method.

FIGURE 10
Linguistic variable definition for sensors (inputs) and fused data (output).
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In this step we divided each sensor range to some linguistic terms such as
near, far, close, etc. and based on overall sate of the sensors the output value
is determined.

After defining membership function of fuzzy fusion system, Rule block of
the system is defined. Here are two sample rules according to Figure 10:

• IF (LRR = Medium Far AND Vision, SRR, L1, L2 = Far) THEN
Distance = Far

• IF (LRR = CloseAND Vision = Medium CloseAND SRR = Medium
AND L1, L2 = Far) THEN Distance = Above Medium

Then a sample input data set is entered as the distance of the front vehicle
with various speed and acceleration to examine the robustness of the system.
The results was very interesting, after several modification and improvement
of membership functions with Min-Max Aggregation operator of FuzzyTECH
simulator, finally we obtained a satisfactory following by the host vehicle.
As it can be seen in Figure 11 in the area with more detecting sensors,
(e.g. in distances < 50 m) we saw more fluctuations, But in far distance
(distance > 100 m) with just one LRR sensor coverage, we saw better fol-
lowing! The reason is very simple, because the nature of different sensors
(in lower distances) they feed the system a little bit different measurements,
which will cause some fluctuations. But despite to a little fluctuation, the result
is more reliable than a single sensor in far distance. The worst deviation found
in this stage was about ±5.26 meters.

Now we try to keep reliability of multi sensory in lower distance and reduce
the deviation and fluctuations. In this stage a filtering method is applied as it
follows.

FIGURE 11
Host vehicle following based on sensor data fusion.
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A slight improvement in computational efficiency can be achieved if we
perform the calculation of the mean in a recursive fashion. Arecursive solution
is one which depends on a previously calculated value. To illustrate this,
consider the following development:

Suppose that at any instant k, the average of the latest n samples of a data
sequence, xi , is given by:

x̄k = 1

n

k∑
i=k−n+1

xi (5)

Similarly, at the previous time instant, k − 1, the average of the latest n

samples is:

x̄k−1 = 1

n

k−1∑
i=k−n

xi (6)

Therefore,

x̄k − x̄k−1 = 1

n


 k∑

i=k−n+1

xi −
k−1∑

i=k−n

xi


 = 1

n
[xk − xk−n] (7)

which on rearrangement gives:

x̄k = x̄k−1 + 1

n
[xk − xk−n] (8)

This is known as a moving average because the average at each kth instant
is based on the most recent set of n values. In other words, at any instant,
a moving window of n values is used to calculate the average of the data
sequence (see Figure 12).

When used as a filter, the value of x̄k is taken as the filtered value of xk . The
expression is a recursive one, because the value of x̄k is calculated using its
previous value, x̄k−1, as reference. This is always the case, regardless of the
number of data points (n) we consider, calculating the current filtered value
requires the use of x̄k−n, i.e. the measurement n time-steps in the past.

FIGURE 12
Moving window of n data points.
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This means that:

1. the filtering cannot be initiated reliably until n measurements have been
made, and

2. We need to store the value of x̄k−n which, depending on the way the
algorithm is coded, may require up to n storage locations.

Additionally, the technique places equal emphasis on all data points. Thus
a value in the past will have the same influence as a more current measurement
when calculating the filtered signal. This may be a desirable feature when the
mean value of the measurement is almost constant, but not when the vehicle
moves at various acceleration rates. These problems can however, be reduced
by generating the filtered value in a slightly different manner.

Actually, in dynamic systems, such as forward vehicle monitoring, the most
current values tend to reflect better the state of the process. A filter that places
more emphasis on the most recent data would therefore be more useful. Such
a filter can be designed by following the procedure used in developing the
moving average filter. As before, the starting point is the mean expressed as:

x̄k = 1

n

k∑
i=k−n+1

xi (9)

But in this case, consider also the mean with one additional point

x̄k+1 = 1

n + 1

k+1∑
i=k−n+1

xi = 1

n + 1


xk+1 +

k∑
i=k−n+1

xi


 (10)

since
∑k

i=k−n+1 xi = nx̄k therefore,

x̄k+1 = 1

n + 1
[xk+1 + nx̄k] =

(
1

n + 1

)
xk+1 +

(
n

n + 1

)
x̄k (11)

By shifting the time index back one time-step, we obtain the corresponding
expression for x̄k as:

x̄k =
(

1

n + 1

)
xk +

(
n

n + 1

)
x̄k−1 (12)

To simplify the notation, let α = n
n+1 , which implies that (1 − α) = 1

n+1 .
We can write the filter as:

x̄k = αx̄k−1 + (1 − α) xk (13)

This expression is Exponentially Weighted Moving Average Filter. When
used as a filter, the value of x̄k is again taken as the filtered value of xk . Notice
that now, calculation of x̄k does not require storage of past values of x, and that
only 1 addition, 1 subtraction, and 2 multiplication operations are required.
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The value of the filter constant, α, dictates the degree of filtering, i.e. how
strong the filtering action will be. Since n � 0, this means that 0 � α ≺ 1.
When a large number of points are being considered, α → 1, and x̄k → x̄k−1.
This means that the degree of filtering is so great that the measurement does not
play a part in the calculation of the average! On the other extreme, if n → 0,
then x̄k → xk which means that virtually no filtering is being performed.

The Exponentially Weighted Moving Average filter places more impor-
tance to more recent data by discounting older data in an exponential manner
(hence the name). This characteristic can be illustrated simply by describing
the current average value in terms of past data.

For example, since x̄k = αx̄k−1 + (1 − α) xk , then

x̄k−1 = αx̄k−2 + (1 − α) xk−1 (14)

Therefore,

x̄k = αx̄k−1 + (1 − α) xk = α [αx̄k−2 + (1 − α) xk−1] + (1 − α) xk (15)

i.e.

x̄k = α2x̄k−2 + α (1 − α) xk−1 + (1 − α) xk (16)

But x̄k−2 = αx̄k−3 + (1 − α) xk−2. Therefore,

x̄k = α3x̄k−3 + α2(1 − α)xk−1 + α(1 − α)xk−1 + (1 − α)xk (17)

If we keep on expanding x terms on the right hand side, we will see that the
contribution of older values ofxi are weighted by increasing powers ofα. Since
α is less than 1, the contribution of older values of xi becomes progressively
smaller. The weighting on xi may be represented graphically in a plot as
depicted in Figure 13.

FIGURE 13
Exponential weighting effect.
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FIGURE 14
Sensor Data Fusion before and after applying moving average filter.

What this means is that in calculating the filtered value, more emphasis is
given to more recent measurements. By applying this approach to Figure 11
(Sensor Fusion Output) using MATLAB, we obtain more satisfactory results
than before in overall fusion system. According to several experiments we
obtained that windows size of 5 met better following and more smoothing on
our fusion graph. Figure 14 shows Fusion graph before and after applying the
filtering approach.

6 DECELERATION AND STEER ANGLE CHANGES
IN DANGEROUS AREA

In previous steps we determined the appropriate and safe speed according
to driver request through human brain fusion and then environmental sensor
fusion. Now as the next experiment we would like to determine the deceler-
ation rate (Km/h) as well as determining a safe distance according to current
speed of the vehicle and angular distance from an unexpected obstacle or
vehicle. In fact we are going to fuse data one level more than previous. The
sensor suite for this application consists of six readily available state-of-the-art
sensors from Bosch, Tyco Electronics and Smart Microwave Sensors (SMS).
One type of sensors is long range radar used for detecting vehicles and another
type is a video lane detection system [20]. Of the five radar sensors two LRR
operate at 77 GHz (with 150 m coverage and search area of 12◦) and three at
24 GHz with coverage range of 80 m. The 77 GHz sensors are radars based on
the TRW production ACC unit [21]. One of these is being installed forward
facing and the other is rear facing. One of the 24 GHz radars used for forward
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FIGURE 15
Radar sensor configuration.

facing and other two 24 GHz radars are side facing (and whose data are com-
bined). Figure 15 shows the radar sensor configuration and approximate areas
of coverage.

We use a simple but heuristic method; we fuse resultant of any overtaking
vehicle or any obstacle around the vehicle by two parameters, θ or its angle
(positive or negative) and d1 its distance to vehicle. Whatever |θ | is greater
and d1 is smaller, the danger of collision is more probable and so the vehicle
should be decelerated more quickly. This is essential to keep a safe distance
without diverting from its path.

Figure 16 shows an overtaking vehicle beside the host vehicle. In Figure 17,
the blue sections show small deviation in current speed and more red areas

FIGURE 16
θ and d1, Important factors to determining deceleration rate and preventing collisions.
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FIGURE 17
Deceleration rate commanded by FLS.

shows more probability of collision detection according to obstacle angle and
distance. (In our system, Deceleration% is percentage of speed decrement in
each 3 seconds). Looking exactly to the symmetric graph provided by FLS
proves a logical decision making like a perfect driver.

Simultaneously, it is also necessary to make correction in side distance
by correction in steer angle to avoid from unexpected obstacle or overtaking
vehicle. In this section our goal is to determine the steer angle change in order
to define an immune margins (d1, d2) whiles other vehicles antecedence from
the host vehicle. In this fuzzy based method, there are 3 input variables and 1
output. We have defined 27 optimal and corrected rules according to an expert
driver experience.

The inputs for determining next action are distance from closest overtaking
vehicle, its angle and distance of vehicle from the verge of the road. The output
is some correction to the steering angle and directs the vehicle to a safe distance
to the overtaking vehicle or an unexpected obstacle. This change should be
done in a manner that do not deviate the vehicle from lane of the road.

As depicted in Figure 16, d1 is distance of overtaking vehicle from our
vehicle, d2 is the distance of vehicle to the verge of the road, and θ shows the
angle of side vehicle from our vehicle. The importance degree of the angle
increases from 0 to +180 asymmetrically as the Membership Function (MBF)
defined in Figure 18.

Figures 19, 20 show distance inputs membership functions, Figure 21
shows structure of fuzzy logic system and Figure 22 shows the necessary
change in steer angle of the vehicle as output.



“aswin119” — 2009/5/14 — 14:18 — page 53 — #19

Advanced Driver Assistance Systems 53

FIGURE 18
MBF of θ or Angle to Object.

FIGURE 19
MBF of d2 or “Distance to Right”.

FIGURE 20
MBF of d1 or “Minimum Distance”.

FIGURE 21
Structure of the Fuzzy Logic System.
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FIGURE 22
MBF of Output or “Steer Angle”.

7 CONCLUSION AND FUTURE WORKS

This paper, proposed a network of sensors for advance driver assistance sys-
tems with a specific deployment on a host vehicle integrated with a logical,
effective and practical hybrid sensor fusion technique using fuzzy method
which is applicable in various depth of fusion for high speed vehicles in roads
and highways. We used some important intuitive and linguistic experiences
of an expert driver as our fusion rules and on the other hand gave the driver
to control the vehicle in conjunction with sensor fusion. The control section
(FLS) played an acceptable rule, much better than an individual driver, to
control the vehicle safely and observant in encountering unexpected obsta-
cles. The results improved with exponentially moving average window filter
and as the future works it is recommended to test this algorithm with more
sophisticated mathematical approaches and filters for better performance.
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