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Abstract. This paper addresses the problem of detecting human faces
in noisy images. We propose a method that includes a denoising prepro-
cessing step, and a new face detection approach based on a novel exten-
sion of Haar-like features. Preprocessing of the input images is focused on
the removal of different types of noise while preserving the phase data.
For the face detection process, we introduce the concept of global and
dynamic global Haar-like features, which are complementary to the well
known classical Haar-like features. Matching dynamic global Haar-like
features is faster than that of the traditional approach. Also, it does not
increase the computational burden in the learning process. Experimental
results obtained using images from the MIT-CMU dataset are promising
in terms of detection rate and the false alarm rate in comparison with
other competing algorithms.

Keywords: Face detection, Global Haar-like features, Phase-preserving
denoising, AdaBoost.

1 Introduction

Face detection is the key step in many face analysis systems [21, 23]. Current
research is aiming at increasing the robustness of the detectors [22, 16, 9]. Among
the proposed face detection algorithms, boosting-based detection with efficient
use of integral image, Haar-like features and a cascade of weak classifiers, have
defined high-performance systems [22, 16, 10].

Following the well-known Viola-Jones face detector [19], many researches
have achieved further improvements in the performance of this detector. Cur-
rently, research in the field can be categorized into four subject areas:

1. Speeding up the learning process.
2. Speeding up the face detection.
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Fig. 1. Detection results using the standard Haar-like detector. Left: Detection results
on a “noisy” input image. Right: Detection results on the denoised image.

3. Defining a better trade-off between detection rate and false-positive rate.
4. Combining the three mentioned criteria.

For example, heuristic methods trying to improve the detection speed [13],
or different version of AdaBoost like. Float boost [5], ChainBoost [20], cost-
sensitive boosting [9, 1], KLBoost [7], FCBoost [16], or RCECBoost [15] that aim
at speeding up the AdaBoost convergence, or at improving the final performance
of the detector.

Some variations of the Haar-like features have been proposed to improve
the performance of boosting-based detectors [6, 11, 12]. These types of Haar-like
features algorithms were introduced to deal with rotated faces and to improve the
detection/false-positive rate. Any of these face detectors uses similar variations
of the image preprocessing step suggested by Viola and Jones [19]. In that paper
the authors utilized a fast variance-normalization preprocessing for face/non-face
windows for dealing with illumination artifacts (as defined in [18] and [17]).

In this paper, we propose an image preprocessing step different to variance-
normalization, to overcome the problem of noisy images and that of images
contaminated with illumination artifacts. We use the image denoising method
suggested by Kovesi in [2]. This method is able to preserve the important phase
information of the images, based on the non-orthogonal and complex-valued
log-Gabor wavelets. Figure 1 shows an example of the results obtained with a
standard Haar-like detector for a “noisy” input image (left), and on the denoised
version of the same image (right).

We apply this technique of denoising in conjunction with a novel version of
the Haar-like features method which together lead to an outperforming result.
As the main contribution of the paper, we propose global Haar-like features
which complement the commonly used standard Haar-like features. With global
Haar-like features we introduce a new point of view to take benefit from the
intensity information of the whole sliding query window. This is in contrast to
the standard Haar-like features that only looks through dark-bright adjacent
regions. We also propose dynamic global Haar-like features aiming to update
global feature values based on intensity variations over the query image.

Since adding new features can increase the computational burden, only se-
lected classical Haar-like features (during the learning process) are candidates for
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becoming global features. We designed a face detector system through boosting
denoised features with an efficient use of standard and global Haar-like features.
Outstanding experimental results, in terms of the detection rate and the false-
positive rate, show the robustness of the proposed method when using ideal,
noisy, and illumination artifacts affected images.

The rest of the paper is organized as follows. Section 2 provides a discussion
of the image denoising method based on a phase-preserving algorithm. Global
and dynamic global Haar-like features are detailed in Section 3. Section 4 focuses
on training a cascade of classifiers based on global and dynamic global features.
Section 5 deals with experimental results, and Section 6 concludes.

2 Phase-Preserving Denoising of Images

A phase-preserving denoising method was proposed by Kovesi in [2]. It assumes
that phase information of images is the most important feature and tries to
preserve this information, of course by trying to keep the magnitude information,
as well.

Let Me
ρ and Mo

ρ denote the even-symmetric and odd-symmetric wavelets at a
scale ρ which are known as quadratic pairs. Considering the responses from each
quadrature pair of the filters, a resultant response vector is defined as follows:

[eρ(x), oρ(x)] = [f(x) ∗Me
ρ , f(x) ∗Mo

ρ ] (1)

where ∗ denotes convolution, and values eρ(x) and oρ(x) are the real and imagi-
nary parts in the complex-valued frequency domain. The amplitude of the trans-
form at a given wavelet scale is given by:

Aρ(x) =
√
eρ(x)2 + oρ(x)2 (2)

and the local phase is given by:

ϕρ(x) = tan−1
[oρ(x)

eρ(x)

]
(3)

Having one response vector for each filter scale, there will be an array of such
vectors for each pixel x in a signal. The denoising process includes defining an
appropriate noise threshold for each scale as well as reducing the magnitudes
of the response vectors, while maintaining the phase without any changes. The
most important step of the denoising process is determining the thresholds. For
this end, Kovesi [2] used the expected response of the filters to a pure noise
signal.

If the signal is purely Gaussian white noise, then the position of the result-
ing response vectors from a wavelet quadratic pair of filters at some scale will
form a 2D Gaussian distribution in the complex plane. Kovesi [2] showed that
the distribution of the magnitude responses can be modelled by the Rayleigh
distribution

R(x) =
x

σ2
g

exp
−x2

2σ2g . (4)
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Fhaar = Fwhite − Fblack = 15573 − 14733 = 840

Fhaar = Fwhite − Fblack = 23429 − 19326 = 4103

Haar feature applied in eye region

Fig. 2. Improved result for Fhaar (integral image) after phase-preserving denoising.
Top: Original image. Middle: Denoised image. Bottom: Sample of an applied Haar-like
feature.

Also, the amplitude response from the smallest scale of the filter pair across the
whole image will be the noise with Rayleigh distribution.

Finally by estimating the mean value µr and standard deviation σr of the
Rayleigh distribution, the shrinkage threshold can be estimated. The thresholds
are automatically determined and applied for each filter scale.

A number of parameters impacts the quality of the denoised output image.
The threshold of noise standard deviations to be rejected (k), the number of
filter scales to be used (Nρ) and the number of orientations (Nr) are the key
parameters.

We set the parameters k = 3, Nρ = 4 and Nr = 4 in our experiments. These
parameters result in an acceptable representation of small and middle-size faces.
However, for large faces, it can lead to erroneous results. One approach is using
a set of different parameters to obtain different images. Another approach is
scaling the original images and then using the same parameters for conversions.

We used the second approach for a better speed-up. After a conversion to
the denoised form, adaptive histogram equalization is used for both training and
test images.

Figure 2 shows the discriminate advantage of using denoised images. The
sample Haar-like feature applied on the eye region shows increased feature values
(Fhaar) which leads to a faster convergence of the classifier.
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3 Global Haar-like Features

Viola and Jones used five types of Haar-like features, which, from now on, we
identify as local features. The value of a local feature fi is computed by subtrac-
tion of white and black regions, wi − bi, using integral image [19].

3.1 Global Features

For every given local feature, we introduce two global Haar-like features (in short,
global features) as Fb = F − bi and Fw = F −wi where F is the integral value of
the whole reference model (window). Global features will be used in conjunction
with the local ones (Figure 3). We call them global features, as these feature
values provides global information in addition to a standard (local) one.

If a local feature is being selected by a boosting algorithm for the formation
of a cascade, then it would be a candidate to be a global feature as well. Global
features are faster than local features, since the required values for calculating
them are already computed at earlier stages. Figure 3 illustrates conversion steps
from a local feature to global ones.

A problem with weak classifiers is that in the last stages, many of them are
needed to reject 50% of non-face samples. The inclusion of these weak classifiers
highly increases the computational cost. Therefore, global features are an efficient
alternative, as they are faster to calculate and also because they provide a better
classification, due to adding a new level of information by extracting different
patterns than the local features.

In short, the term global in this paper refers to a comparison between the
whole window and a portion of that window, while the common local features
refer to adjacent rectangles of equal size.

3.2 Dynamic Global Features
Let bi and wi denote the integral values for the black and white regions of the
ith local feature, respectively, defining the local feature value as wi − bi. Let F
be the integral value of the reference model (sliding window). The current local
feature is now accompanied by two global feature values, to be used in a weak
classifier of the cascade for a given sliding window. In the dynamic version of
global features, we update F by

F = F +

j≤n∑
i=1

(wi − bi) (5)

where, n is the total number of local features in the current cascade and j is
current index over the global feature being assessed.

By using this equation, as the input windows progress through the cascade,
the value of F is updated using the global features. We call this type of features
dynamic global Haar-like features (in short, dynamic global features). Experi-
mental results show that the dynamic global features can obtain a higher detec-
tion rate and less false positive rate in comparison with the non-dynamic version
of the global features.
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Fig. 3. Extraction of Global Haar-features from a standard Haar-feature.

4 Boosting Cascades with Local and Global Features

In this section, a cascade of weak classifiers is designed by considering the global
features. It is common that each stage of a cascade should reject 50% of negative
samples while the true detection rate remains close to optimal.

When global features are considered, it is important to decide which of the
local features should be considered as being global. One approach is to tem-
porarily keep a current global feature and continue searching for the next local
feature, without considering the effect of the current global feature. If global
features show a better rejection rate, then it is efficient to choose the reserved
global feature as the desired feature and then searching for next local features
again. Also, even if their rejection rate becomes equal or near to equal, the global
features are preferred.

Pseudocode for the learning cascades is provided as Algorithm 1. Apply-
ing the learning process, the following weak classifiers are obtained, where the
optional pairs (φkb , φ

k
w) denote global features:

(θkl , (φ
k
b , φ

k
w)), . . . , (θnl , (φ

n
b , φ

n
w)). (6)

We observed that when not using dynamic global features, the number of
global features selected during the cascade design is insignificant. Also, the effect
of only using global features is not noticeable.

However, by using the dynamic global features, the number of global features
selected was noticeable. The use of dynamic global features increases the perfor-
mance of Haar-like feature based face detectors, in terms of detection rate, false
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Algorithm 1 Learning weak classifiers by using local and dynamic global fea-
tures.

Input: Np positive samples; Nn negative samples.

Initialisation: Let Fw = Fb = F , where F is the sum of intensities in the whole
window. Let k = 1.

Output: (θkl , (φ
k
b , φ

k
w)), . . . , (θnl , (φ

n
b , φ

n
w)).

1: Find kth local weak classifier θkl with threshold T k
l =

∑mk
i=1 (wi − bi); where mk is

the total number of local features in the kthclassifier.

2: Find next (k + 1th) weak classifier θk+1
l ;

3: Find kth pair of global weak classifiers φk
b and φk

w, corresponding to the black
and white parts of the local feature, respectively; set T k

b =
∑mk

i=1(Fb − bi), and
T k
w =

∑mk
i=1(Fw − wi);

4: Decide to choose best classifier(s) among (φk
b ), (φk

w), and θk+1
l ;

5: if A global classifiers is selected then

6: Update the values of Fw and Fb as: Fw = Fw + wi, Fb = Fb − bi;

7: Set k = k + 1, find the next local weak classifier θkl ;

8: Go to Step 3;

9: else

10: k = k + 1;

11: Add θkl to the cascade and search for next local weak classifier θk+1
l ;

12: Go to Step 3;

13: end if

alarm rate, and average number of features met in a window, and consequently
results in a speed-up. Therefore, we preferred to use dynamic global features in
conjunction with the local features.

5 Experimental Results

While a standard Haar-like classifier performs well in face detection under ideal
lighting conditions [22], it seriously has difficulties when detecting faces un-
der challenging illumination conditions, even for straight forward looking faces.
However, we observed that after a phase-preserving denoising, and using the
suggested global and dynamic global features, considerable improvements can
be achieved in the true detection rate in comparison to that obtained using a
standard Haar-like classifier. Choosing proper denoising parameters (k, Nρ and
Nr) can lead to further improvements.

In order to validate the methods proposed in this paper, we designed four
classifiers using two preprocessing methods and different combinations of the
local, global and dynamic global features.
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Fig. 4. Distribution of features for different learned cascades, each consists of 14 stages.

The first detector was trained based on a variance-normalized samples using
only the standard local Haar-like features (VN+Standard Local Haar).

The second classifier (VN+DyGlobal) was also learned from variance-normalized
preprocessed samples, but this time using both local and dynamic global features.

The third detector is learned by local and global features, and the training
dataset is enhanced by phase-preserving denoising technique (PPD+Global).

And the last detector (PPD+DyGlobal) uses local and dynamic global fea-
tures, also based on the denoised training dataset.

For training all four classifiers, we used a large dataset of 10,000 face samples
from different ages, genders, races and nationalities, mainly from AR [8] and
Yale [4] datasets.

In addition, 50,000 non-face samples were considered as negative samples to
train each stage of the cascade. Non-face samples were selected randomly from
a dataset of scene categories [3]. This dataset consists of fifteen natural scene
categories, including buildings, offices, roads, and landscapes.

We evaluated the performance of the four classifiers in terms of number of
features involved in each stage, speed, and precision rate.

Figure 4 depicts the distribution graphs of local and global features for each
of the four mentioned classifiers. Graph (a) is related to the first classifier (VN+
Standard Local Haar) and it shows a total number of 394 features in a cascade of
14 weak classifiers. The graph shows that classifier (a) involves highest number
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VN+ Standard Local Haar VN+ DyGlobal

Fig. 5. Sample detection results for the first two classifiers trained based on standard
Haar features (blue circles) or dynamic global features (green squares), using a variance-
normalized dataset.

PPD + Global PPD + DyGlobal

Fig. 6. Sample detection results for the last two classifiers trained based on global
features (blue circles) or dynamic global features (red squares), using the proposed
denoised dataset.

of features, compared to other three classifiers. This means higher computational
cost to confirm or reject a face candidate.

Graph (b) represents a faster classifier with a considerably smaller number
of local features and also a total number of 367 features including both local and
Dynamic global features, trained based on variance normalized dataset.

Graphs (c) and (d) show feature distributions when we trained the classifiers
with a phase-based denoised dataset. While the total number of features in graph
(c) and (d) are very close to each other (255, and 262 respectively), the Classifier
PPD+DyGlobal outperforms the other three classifiers as follows: Considering
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Fig. 7. ROC curve of the proposed detectors on MIT-CMU dataset. PPD+DyGlobal
denotes the classifier trained based on denoised samples using the local and dynamic
global features. PPD+Global denotes the classifier trained based on denoised samples
using local and global features. Similarly, the two other detectors, are learned from
variance normalized samples.

50% rejection rate for each stage, 97% of non-face images will be rejected within
the first six stages (weak classifiers), so having the minimum number of features
in the first six stages plays a very crucial rule (i.e. the smaller the number of
features, the faster the classifier). Classifier (d) contains only 40 features in its
first six stages, while classifiers (a), (b), and (c) involve 60, 56, and 46 features in
the six early stages which means 50%, 40%, and 15% slower operation compared
to the PPD+DyGlobal classifier.

In addition to computational cost, we also need to consider effectiveness and
accuracy of the four classifiers in terms of recall rate and false alarm.

Figures 5 and 6 show detection results for some sample images that were not
used in the training phase in none of the four classifiers. The figures illustrate
that the classifier we trained based on dynamic global classifier and phase-based
denoising provides more accurate results. Figure 7 illustrates the receiver oper-
ating characteristic (ROC) curves for the four mentioned detectors evaluated on
the MIT-CMU [24] dataset. The figure shows that the best results were obtained
using the PPD+DyGlobal detector. Observe that PPD+Global also performed
better than the considered local methods.

Table 1. Comparison between PPD+DyGlobal and state-of-the-art face detection
techniques.

Method Proposed VJ[19] RCBoost[16] Pham[11] Opt[15] Chain[20]

Detection rate (%) 96.4 86.3 94.00 91.00 95.00 93.00
# False-positives 62 153 96 170 900 130
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As further evaluation, Table 1 provides a comparison between the proposed
PPD+DyGlobal classifier, standard Viola-Jones, as well as four other state-of-
the-art face detection techniques [16, 11, 15, 20]. The overall results confirm that
the proposed method not only incorporates a smaller number of features (as
discussed in the first part of the experimental section) but also outperforms the
others in terms of a higher detection rate and a smaller number of false-positives
due to global information provided by the proposed dynamic global features.

6 Conclusions

In this research, we studied the effect of a preprocessing technique on input
images for boosting-based face detectors. Phase-preserving denoising of images
is used to preprocess the input images. The paper also proposed a new type of
Haar-like features, called global Haar features, for the first time. This type of
features supports faster calculations than local Haar features and provides a new
level of global information from the query patches. We also proposed to use a
dynamic version of the global features that updates its value dynamically as the
classifier assess next local features.

Four distinct cascades are learned with and without using the denoised im-
ages and global Haar features. Finally, resulting detection rates and false-alarm
rates shown a significant advantage for the proposed technique against state-of-
the-art face detection systems, especially for challenging lighting conditions and
noisy input images.

The proposed technique is expected to be effective on various object detection
fields, as we also applied the proposed technique as part of a vehicle detection
system [14] with superior results. We highly recommend to use, and to do further
study on the proposed global Haar-like features for different kinds of boosting or
Haar-based object detectors, not limited to face detection.

Acknowledgment: The authors thank professor Reinhard Klette for discus-
sions and comments on the paper.

References

1. Hou, X., Liu, C.L., Tan, T.: Learning boosted asymmetric classifiers for object
detection. Computer Vision and Pattern Recognition, pp. 330–338 (2006)

2. Kovesi, P.: Phase Preserving Denoising of Images. Digital Image Computing, Tech-
niques and Applications, (1999)

3. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. Computer Vision and Pattern
Recognition, pp. 2169–2178 (2006)

4. Lee, K.C., Ho, J., Kreigman, D.: Acquiring linear subspaces for face recognition
under variable lighting. IEEE Trans. Pattern Analysis Machine Intelligence, 27,
684–698 (2005)

5. Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans.
PAMI, 26, 1112–1123 (2004)



12 M. Rezaei, H. Ziaei Nafchi, S. Morales

6. Lienthart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object
Detection. International Conference on Image Processing, pp. 900–903 (2002)

7. Liu, C., Shum, H.Y.: Kullback-leibler boosting. Computer Vision and Pattern
Recognition, pp. 587–594 (2003)

8. Martinez, A.M., Benavente, R.: The A.R. face dataset. CVC Technical Report (1998)
9. Masnadi Shirazi, H., Vasconcelos, N.: Cost-Sensitive Boosting. IEEE Trans. PAMI,

33, 294–309 (2011)
10. Masnadi Shirazi, H., Vasconcelos, N.: High Detection-rate Cascades for Real-Time

Object Detection. ICCV, pp. 1–6 (2007)
11. Pham, M.T., Cham, T.J.: Fast Training and Selection of Haar features using Statis-

tics in Boosting-based Face Detection. International Conference on Computer Vi-
sion, pp. 1–7 (2007)

12. Pham, M.T., Gao, Y., Houng, V.T.D., Cham, T.J.: Fast Polygonal Integration
and Its Application in Extending Haar-like Features to Improve Object Detection.
Computer Vision and Pattern Recognition, pp. 942–949 (2010)

13. Rezaei, M., Klette, R.: Novel Adaptive Eye Detection and Tracking for Challenging
Lighting Conditions. The 11th Asian Conference on Computer Vision Workshops,
pp. 427–440 (2013)

14. Rezaei, M., Terauchi, M.: Vehicle Detection Based on Multi-feature Clues and
Dempster-Shafer Fusion Theory. 6th Pacific-Rim Symposium on Image and Video
Technology (2013)

15. Saberian, M.J., Vasconcelos, N.: Learning Optimal Embedded Cascades. IEEE
Trans. PAMI, 34, 2005–2018 (2012)

16. Saberian, M.J., Vasconcelos, N.: Boosting Classifier Cascades. Neural Information
Processing Systems, (2010)

17. Struc, V., Vesnicer, B., Mihelic, F., Pavesic, N.: Removing illumination artifacts
from face images using the nuisance attribute projection. IEEE International Con-
ference on Acoustics Speech and Signal Processing, pp. 846–849 (2011)

18. Vaudrey, T., Morales, S., Wedel, A., Klette, R.: Generalized Residual Images Effect
on Illumination Artifact Removal for Correspondence Algorithms. Pattern Recog-
nition, 44, 2034–2046 (2011)

19. Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of
Computer Vision, 57, 137–154, (2004)

20. Xiao, R., Zhu, L., Zhang, H.J.: Boosting chain learning for object detection. Com-
puter Vision and Pattern Recognition 709-715 (2003)

21. Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE
Trans. PAMI, 24, 34–58 (2002)

22. Zhang. C., Zhang, Z.: Boosting-Based Face Detection and Adaptation. Morgan &
Claypool (2010)

23. Zhang. C., Zhang, Z.: A Survey of Recent Advances in Face Detection. Microsoft
Research, Technical Report, MSR-TR-2010-66 (2010)

24. Carnegie Mellon University image dataset, http://www.vasc.ri.cmu.edu/idb/

html/face/frontal_images

View publication statsView publication stats

https://www.researchgate.net/publication/258351737

