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Abstract

The paper proposes an advanced driver-assistance sys-
tem that correlates the driver’s head pose to road hazards
by analyzing both simultaneously. In particular, we aim at
the prevention of rear-end crashes due to driver fatigue or
distraction. We contribute by three novel ideas: Asymmetric
appearance-modeling, 2D to 3D pose estimation enhanced
by the introduced Fermat-point transform, and adaptation
of Global Haar (GHaar) classifiers for vehicle detection
under challenging lighting conditions. The system defines
the driver’s direction of attention (in 6 degrees of freedom),
yawning and head-nodding detection, as well as vehicle de-
tection, and distance estimation. Having both road and
driver’s behaviour information, and implementing a fuzzy
fusion system, we develop an integrated framework to cover
all of the above subjects. We provide real-time performance
analysis for real-world driving scenarios.

1. Introduction
Advanced driver-assistance systems (ADAS) are a cur-

rent goal in computer vision, especially at centers of the au-
tomotive industry. A real-world ADAS needs to understand
the driver’s behavior (e.g., by analyzing facial features, or
by steering-wheel motion analysis). Face detection is ar-
guably still difficult for extreme head poses [2] or challeng-
ing lighting conditions. The system also needs to detect
potential hazards on the road. Simultaneous “driver” and
“road” monitoring requires object detection, pose tracking,
and data fusion [24].

First, we propose a comprehensive solution for detecting
a driver’s direction of attention, yawning, and head nodding.
The method is based on the novel ideas of asymmetric ap-
pearance modelling (ASAM), and the Fermat-point trans-
form. Then we combine the introduced method for driver
monitoring with road monitoring (i.e., vehicle detection and
distance estimation). The system finally analyses the corre-
lation between a driver’s head pose with potential road haz-
ards, in order to prevent imminent crashes at early stages.

Figure 1. 64 keypoint landmarks (left). Symmetric Delauney
triangulation (middle). Asymmetric intensity variations (right).

Using monocular vision only, we keep the system at low
computational costs; yet we compete with the state-of-the-
art. To the best of our knowledge, no previous research has
jointly addressed all of the above mentioned subjects as one
integrated real-time solution.

We provide techniques for two important challenges that
have rarely been addressed so far: (A) Dealing with inten-
sity asymmetry and unbiased illumination for the same ob-
ject, such as a driver’s face (Fig. 1, right), and (B) Mapping
a generic rigid 3-D face model onto deformable faces.

The paper is organized as follows: Section 2 discusses
related work. Section 3 proposes the ASAM to define a
driver’s face shape and appearance. Section 4 discusses
driver-pose estimation via mapping of face appearance into
a 3-D model, enhanced (for the first time) by the idea of a
Fermat-point transform. Section 5 reviews our vehicle de-
tection technique applicable for day, night, and other chal-
lenging conditions. Sections 6 and 7 focus on “Driver-
Road” fuzzy fusion and experimental results. Section 8 pro-
vides concluding remarks.

2. Related Work
Xie et al. [4] propose driver-fatigue detection using

the active appearance model (AAM), as introduced by
Cootes [3], by fitting it to the eye region, followed by head-
pose detection depending on the face-centroid. The method
appears to be too basic to be applicable in highly-dynamic
real-world scenarios.

Mosquera and Castro [21] use a recursive algorithm to
improve convergence accuracy when modeling a driver’s
face. Results show improvements compared to Cootes’
AAM method [3]; however, a driver’s facial features are not
yet taken into account.

Chutorian and Trivedi [22] monitor a driver’s activity by
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using an array of Haar-wavelet AdaBoost cascades for ini-
tial face detection, and applying localized gradient orienta-
tion (LGO) as input for supporting vector regressors. The
method uses a rigid facial-mesh model to track the driver’s
head. There is a general weakness here as the tracking mod-
ule may easily diverge for face shapes that are highly differ-
ent to the given mesh model.

Visage Technologiesr provides a state-of-the-art com-
mercial head tracker [23] based on feature-point detection
and tracking of the nose boundary and eye regions. Despite
of accurate results under ideal conditions, this tracking sys-
tem fails in the presence of noise and non-ideal conditions.

Krüger and Sommer used Gabor wavelet networks [10]
for head-pose estimation. Claimed advantages cover inde-
pendence to affine deformations, and high-precision of the
algorithm for any desired input (the input may range from a
coarse representation of a face to an almost photo-realistic
subject). Nevertheless, the results are not backed-up by val-
idation or comparison with other techniques.

3. Asymmetric Appearance Models
Appearance models (AM), as originally introduced by

Cootes et al. [3], are widely used for object modeling, espe-
cially in the context of face processing. Many research work
address it as an optimization problem to find an improved
fitting algorithm and to reduce the matching errors.

3.1. Implementation

An AM combines a shape model and a texture model. In
order to define a face-AM we need to train a variation of
face shapes (as shape model) and face intensities (as texture
model).

Considering 64 point-landmarks, as illustrated in Fig. 1,
right, and using the MUCT face dataset [20], we create an
annotated face dataset in order to train a generic face-shape
model. Following the standard AM approach [3], and ap-
plying a uniform coordinate system, annotated faces are
represented by a vector f = [x0, y0, ..., xi, yi]

>. A face-
shape model is defined as follows:

f = f̄ + Psbsi , (1)

where f̄ is the mean face shape applying principal com-
ponent analysis (PCA) on the available face data, Ps is an
orthogonal matrix of face-shape variations, and bs is a vec-
tor of face-shape parameters (given in distance units). By
applying a translation (tx, ty), and a rotation and scaling
(sx = s · cos θ − 1, sy = s · sin θ), each sample face is
warped into the mean shape model, thus creating a new face
F . Let F = St(f) be this warped image, where St is the
warping function, and t = [sx, sy, tx, ty]> is the pose pa-
rameter vector. Figure 2 illustrates the steps for creating
the appearance face model based on only two sample faces.
The second row of Fig. 2 shows examples of shape varia-

Appearance model:
Mean shape    Mean texture

Mean shape model

+

Figure 2. Conversion of face shape and face texture models of two
sample faces into a mean appearance model.

tions with different deformation parameters applied to each
sample face. The blue face shows the obtained mean-shape.

To create a face texture (intensity) model, first a sym-
metric Delaunay triangulation is applied to shape-feature
points, for each sample face (Fig. 1, middle). Considering
g as a texture vector of a sample face image, similar to the
shape-warping stage, we have a mapping g → g∗, where g∗

is generated after scaling and adding an offset to current in-
tensity g. This way we create a shape-free “intensity patch”
for each sample face given in the training dataset. This is
done by raster scanning of the texture vector g, and a linear
normalization of g for every half of the face as follows:

g∗L =
(gL − µL.1)

σL
, g∗R =

(gR − µR.1)

σR
, (2)

where µL, µR and σ2
L, σ2

R are means and variances for the
left and right part of the face-intensity patch, gL, gR are the
left and right half of the g vector, g∗L, g∗R are normalized
data, and 1 is a vector of ones. After the normalization, we
have that g∗

> · 1 = 0 and |g∗| = 1.
As part of asymmetric appearance models (ASAM),

Eq. (2) considers individual asymmetric intensity normal-
ization for each half of a face. This is a crucial step, and
treating the face halves as two distinct objects can help us
to prevent divergence of face-shape matching due to cumu-
lative intensity-normalization errors. Figure 1, left, shows
how face intensity can vary depending on light source lo-
cation and due to the nose bridge. This is a common but
neglected point in applications such as driving scenarios,
where one side of the face is brighter than the other side.

Similarly, by applying a PCA to the normalized intensity
data, a face intensity-model is estimated as follows:

gL = ḡ∗L + PgLbgL , gR = ḡ∗R + PgRbgR , (3)

where ḡ∗ is the mean vector of normalized gray-level or in-
tensity data, Pg is an orthogonal matrix of texture-modes of
variations, and bg is a vector of intensity parameters in gray-
level units (Fig. 2, third row). We apply this as individual
processes for each half of the face.

Face-shape and texture can therefore be summarized as
bs and bg . Since there could be some correlation between
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intensity and shape data, a combined AM is considered. For
each sample face, a concatenated vector b is defined:[

Wsbs
bg

]
=

[
WsP

>
s (f − f̄)

P>g (g − ḡ∗)

]
, (4)

where Ws is a diagonal matrix which defines appropriate
weights for the concatenation of bs and bg at places where
they have different units (i.e. the distance unit versus the
intensity unit). The RMS in g, per unit change in bs, is
considered to define appropriate weightsWs for Eq. 4. This
makes bs and bg to be proportional. Applying another PCA
to these vectors, the AM is given as

b = Qc , (5)

where c is the vector of parameters for the combined AM
which unifies shape and intensity models:

f = f̄ + PsWsQsc , g = ḡ∗+ PgQgc . (6)
An eigenvector Q is subdivided as follows:

Q =

[
Qs

Qg

]
. (7)

For the training stage, we used a set of 7,512 images from
the MUCT face dataset [20], each one annotated as per the
proposed 64 point-landmark approach, followed by 2,500
pixel intensity sampling from each half of a face.

3.2. Asymmetric AAM

Reviewing the Cootes et al. method [3], an active ap-
pearance model (AAM) refers to an active search and re-
finement process to adapt a previously trained face-AM into
an unknown face; by asymmetric AAM (ASAAM) we pro-
cess a face as an asymmetric object.

Accuracy and speed of model refinement is a crucial
step, as it can directly affect the next step of our algo-
rithm for head-pose estimation. Using our recently pro-
posed Global Haar (GHaar) classifier [14], the classifier
can return robust face detection and localization even un-
der noisy and challenging lighting conditions.

Having model parameters c and shape-transforming pa-
rameters t, the rough position of the trained model points
can be mapped on the image frame F , which also repre-
sents the initial shape of the face patch.

As part of the matching process, pixel samples gim from
the region of the image are taken and projected to the left
or right texture model frame, gs = T−1u (gim). Given the
current texture model as gm = ḡ∗ + Qgc, the difference
(residual) between texture of the current image frame and
the current model is as follows:

r(p) = gs − gm , (8)

where p is the parameter vector of the model:
p> = (c>|t>|u>) . (9)

Applying RMS and measuring residual errors, the model
parameters can be gradually refined. This can be seen as

Algorithm 1 Iterative search and model refinement
1: Use gs = T−1

u (gim) to map the texture sample frame into the
texture model frame.

2: Calculate the current (initial) error, E0 = |r|2 = |gs − gm|2
3: Evaluate the predicted displacements based on RMS method,
δp = −Rr(p), whereR is the matrix of texture sample points

and the model parameter is R =
(
δr>

δp
δr
δp

)−1
δr>

δp

4: Set k = 1.
5: Set p = p+ kδp to update the parameters of the model.
6: CalculateF ′ and g′m as the new points, and new texture model

frame, respectively.
7: Sample the face at F ′, so as obtain a new estimate of g′im
8: Evaluate a new updated error-vector, r′ = T−1

u′ (g′im) − g′m;
therefore the updated error E1 = |r′|2.

9: if E1 < E0 then
10: Accept the last estimate,
11: else
12: Set k = k/2,
13: Goto Step 5; repeat until no further decrease for |r′|2
14: end if

an optimization approach in which a few iterations lead to
smaller residuals, thus to the best match of the model with
the input face. Starting from a current estimation for ap-
pearance model parameters c, at position t, texture transfor-
mation u, and a face example with the current estimation as
gim, the iterative algorithm is summarized as Algorithm 1.

Experimental results show that after 3 to 5 iterations, the
ASAAM method rapidly converges to the actual face image.
Figure 3 shows an example of inaccurate model fitting by
the standard AAM, and an improvement by ASAAM.

4. Driver’s Head Pose and Gaze Estimation

In this section, we detect the driver’s direction of atten-
tion, based on mapping 2-D feature-points into a 3-D face
model, and a method which we call the Fermat-point trans-
form. Pose-estimation is the preliminary step to analyse
driver’s attention in correlation with road hazards.

Different approaches have been developed e.g., pose de-
tection from orthography and scaling (POS), or POS with
iteration (POSIT) [5, 6, 7], 3-D morphable models [8], ran-
dom decision forests [1], or multi-view based training [2].

Figure 3. (Left) Inaccurate model fitting, especially for the right
half of the face. (Right) ASAAM method leading to a proper
model matching both halves of the face.
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The above work, even the most recent one, only con-
siders a generic 3-D model, or a set of convex polygons
as a model-reference for pose detection. Regardless of the
pose-detection methodology and 3-D model specification,
the matching error of the model with a query object has not
yet been addressed.

In the next two sub-sections we introduce a solution to
minimize the 2-D to 3-D matching error, thus a more accu-
rate pose estimation.

4.1. Optimized 2-D to 3-D Pose Modelling

Figure 4 shows the pinhole-camera model [7] with cal-
ibrated focal length f , center of projection O, axes Ox,
Oy, and Oz, and unit vectors i, j, and k in camera co-
ordinates. In the 3-D object plane, we have a face model
with feature points F1, F2, ..., Fn. The coordinate frame for
the face reference is centered at F0, and it is specified by
(F0u, F0v, F0w).

We assume that the driver’s face shape is already com-
puted by ASAAM. This relates every feature-point Fn

to coordinates (Fnu, Fnv, Fnw), and therefore projected
points p1, p2,..., pn to image plane coordinates as of
(xn, yn). Only coordinates of (Xn, Yn, Zn) in the camera
coordinate system are unknown. We find the driver’s face-
pose by calculating rotation matrix and translation vector
O → F0. Combining all available information, we have:

R =

 iu iv iw
ju jv jw
ku kv kw

 , T =

 Tx
Ty
Tz

 , (10)

C =

 f 0 cx
0 f cy
0 0 1

 , P =

[
R3x3 T3x1
01x3 1

]
, (11)

where R is the rotation matrix, T is the translation ma-
trix, C is the camera matrix, f is the focal length, (cx, cy)
is the camera’s principal point, and P is the pose matrix.
Thus, the projection of a given object point (Xn, Yn, Zn)
into camera coordinates can be represented as follows:

F2
F1

Fn

pn
p0

p1

f

F0

p2

w

k

i x

y

u

j

Zr Image plane

Object plane
z

mn

v

O

a a’

(X,Y,Z)

(x,y)

Figure 4. Projection of a 3D face model M into the image plane c.

 in
jn
kn

 =

 f 0 cx
0 f cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

×

iu iv iw Tx
ju jv jw Ty
ku kv kw Tz
0 0 0 1



Xn

Yn
Zn

1

 . (12)

For computing R, we only need i and j (k is simply the
cross product i× j). On the other hand, according to Fig. 4,
the translation vector T is equal to vectorOF0. HavingOp0
and OF0 aligned, it follows that

T = OF0 =
Z0

f
Op0 , (13)

Therefore, by calculating i, j, and Z0 (the depth of point
F0), the pose of the face can be defined. Depth variation is
small within a driver’s facial feature points, compared to the
distance between camera and face (i.e., Oa ≈ Oa′). Thus
we can approximate the depth of every point Fn as being
equal to Zr. Consequently, this simplifies the previous ex-
pression, and the projection of any point (Xn, Yn, Zn) from
the object plane to the image plane can be expressed as

(xn, yn) = (f
Xn

Zn
, f
Yn
Zn

) , (14)

or as

(xn, yn) = (
f

1 + ∆z

Xn

Zr
,

f

1 + ∆z

Yn
Zr

) , (15)

with 1 + ∆z = Zn

Zr
. Let Pr1 and Pr2 be the quadro-

elements in the first and second row of the matrix P (in
Eq. 11). Thus, we define 4-D vectors I and J as follows:

I =
f

Tr
Pr1 and J =

f

Tr
Pr2 . (16)

Knowing the coordinates of vectors F0Fn in the object
plane, and knowing the xn and yn coordinates for points
p0 and pn in the image plane, the fundamental equations
are:

F0Fn.I = x′n , F0Fn.J = x′n , (17)

x′n = xn(1 + ∆zn) , y′n = yn(1 + ∆zn) , (18)

∆zn = Pr3.
F0Fn

Zr − 1
. (19)

Any initial (approximated) value for ∆Zn solves the above
equations, thus a driver’s face pose can be approximated.

We performed a statistical analysis on 84 3-D face mod-
els from the TurboSquid dataset [9], first, to select an op-
timum 3-D model with a best match with our face dataset,
and, second, to assess mean and variance of depth in re-
gions of eyes, nose tip, mouth, and ear tops. Knowing f
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and Zr (i.e., the distance of the camera to the face), and by
applying the analysed statistical data, we derived an initial
value ∆zn = 0.082. Once i and j are computed, the value
of ∆zn can be refined and optimized after two or three it-
erations. This is much faster than a blind POSIT algorithm
that needs four to ten iterations to refine ∆z [6].

4.2. Face Registration by Fermat-transform

As part of our algorithm to obtain roll, yaw, and pitch
angles of a driver’s face, we use the state-of-the-art method
of EPnP by Lepetit et al. [11]. However, we add an im-
portant pre-processing step to minimize the mismatch er-
rors of 2-D to 3-D corresponding points. Work that uses
the perspective-n-points (PnP) method, normally consid-
ers four points around the nose boundary [5, 12]. This
may simplify the case into a planar problem, as sampled
feature points around the nose boundary have almost the
same depth in the camera-coordinate system. However, as
a weakness, those feature points cover only a limited region
of the face which might be affected by noise. This causes
larger matching errors for registering the corresponding
points of a 2-D face with our 3-D model.

Using five correspondences, we consider pose estimation
of a driver’s face as a P-5-P problem. Generally, the method
estimates the pose of the camera from n 3-D to 2-D point
correspondences. The idea is to define n 3-D points as a
weighted sum of four pre-selected control-points as below:

Fn =
∑4

j=1 αnjC
F
j , pn =

∑4
j=1 αnjC

p
j

with
∑4

j=1 αnj = 1 and n = 1, ..., 5 (20)

where CF
j and Cp

j are control points of a 3-D model and
the image coordinate system, respectively, and αnj are ho-
mogeneous barycentric coordinates. Control points can be
chosen arbitrarily or aligned with the principal direction of
the data. Let {in}n=1,...,5 be the 2-D projection of reference
points {Fn}n=1,...,5 in the 3-D model. Then we have that

ωn

[
in
1

]
= Apn = A

4∑
j=1

αnjC
p
j , (21)

or

ωn

 in
jn
1

 =

 f 0 cx
0 f cy
0 0 1

 4∑
j=1

αnj

 xpj
ypj
zpj

 , (22)

where ωi are scalar projective parameters. Although four
pairs of points in both world- and image-coordinate systems
are sufficient to solve a PnP problem, we use five points
(ears’ top, nose tip, and mouth corners) in order to main-
tain both redundancy and robustness towards image noise,
or to reduce the impact of errors from the ASAAM stage.
Furthermore, those five points cover a wider region of the
face, also with different depth values. Before proceeding
to the EP5P solution, we propose a new point-set transform

F1

F2 F3
p3

p4 p5
p2

p1

Figure 5. Determining roll, yaw, and pitch of a driver’s face based
on ASAAM, driver’s face-shape normalization, and EPnP.

and normalization to minimize the 3-D model’s matching
error with the actual face shape. The final objective is to
gain a more accurate pose estimation, and to avoid model
matching divergence due to residual errors. After solving
Eq. 12, we rescale a driver’s face shape (obtained from the
ASAAM stage) to match the points p4 and p5 to the known
corresponding points F4 and F5 in the 3-D model (Fig. 5).
However, due to face-shape variations, we can expect that
the remaining triple points (p1, p2, and p3) will not exactly
match with the corresponding points in the 3-D model (F1,
F2, and F3).

This is especially a matter of concern for the nose tip
(p1), as the nose length may highly vary from face to face.
As a novel contribution, we adapt the Fermat-Torricelli
problem [13] from geometry into computer vision to mini-
mize the model matching error.

After finding the Fermat points and the isogonic centers
P1 and P2 for the triangles ∆p1p2p3 and ∆F1F2F3, we
translate p1p2p3 (with no rotation) such that P1 matches
P2. Therefore we have that

Px,y = arg min
x,y∈R

{
3∑

n=1

√
(F x

n − pxn)2 + (F y
n − pyn)2

}
.

(23)
Thus, triple points p1, p2, p3 are translated in an order such
that they have the minimum possible distance to corre-
sponding points F1, F2, F3 in the 3-D model. Based on
these new translated points, we wrap the other facial points
accordingly. We name this process as Fermat-transform.

Since a vehicle’s driver does not change during a driv-
ing course, we apply the same relative Fermat-transform
and scaling to all the input faces and all the pre-calculated
Delaunay triangles, with respect to the Fermat point P.
This guarantees that the face shape-model matches our 3-
D model as close as possible, while we keep p4 and p5 un-
changed at their original locations. Figure 5 shows a sample
output of a driver’s attention estimation based on the tech-
niques proposed in Sections 3, 4.1, and 4.2.

5. Vehicle Detection and Distance Estimation
This section addresses road-scene monitoring as the sec-

ond component of our driver-assistance system.
Road scenes are typically a highly dynamic environ-

ment with moving vehicles as potential hazards. Devel-
oping a vehicle classifier based on our recently proposed
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Figure 6. Comparison of standard Haar-like features and global
Haar-features.

idea of global Haar-like features (GHaar) [14], and using
an inverse-perspective mapping [15], we not only can detect
the leading vehicles on the road but we can also estimate the
distance to the vehicles using a monocular camera only.

For any given standard Haar feature [16], we define two
global Haar-like features as follows:

Fb = SF − Sbi and Fw = SF − Swi
, (24)

where SF is the integral value of the sliding window [14]
(Fig. 6), and Sbi , and Swi are the integral values of the black
and white (b and w) patches, respectively.

We use global features in conjunction with the local
ones, which provide global information about the query
window as an added value to the local intensity information
via a standard Haar feature. Integration of the standard Haar
and global Haar features leads to a higher rate of true posi-
tives, less false alarms, and 30% faster performance [14].

6. Driver-Assistance by In-Out Fuzzy Fusion
In this section we discuss how to assess the risk level

of a given driving scenario based on five inputs of driver’s
distraction monitoring (yaw, roll, pitch, yawning, head nod-
ding), and two inputs about road situations (distance, and
the angle of the detected vehicles to the ego vehicle).

Dealing and judgment for determining the crash risk
based on all the above information could be a highly com-
plex problem. In related work by Fletcher et al. [17] and
Mori et al. [18], the authors judge based on multi-sensor in-
formation to detect road speed signs, obstacles on the road,
and the time to collision (TTC). An alarm is raised if the
TTC is smaller than a given threshold, and the driver is
looking into the opposite direction of the road.

Some of these warnings are false alarms due to inaccu-
rate judgment, or some could be too late as the driver’s re-
action time could vary, depending on the driving situation,
or the driver’s level of awareness. In addition, dealing with
all the above information in a strictly mathematical sense,
could be complicated or non-verifiable.

Studying the driving behaviour of an expert driver, one
can confirm that a driver neither thinks about accurate mea-
surement of distance to obstacles, nor calculates the TTC.
Instead, a driver uses linguistic expressions such as very far,
far, close, or very close to interpret distance to hazards, or

Driver’s head yaw angle (degrees)

Front vehicle’s relative location and angle to the ego-vehicle (degrees)

Front vehicle’s distance to the ego-vehicle (meters)

Risk level (based on In-out perception)

Mamdani FIS

Rule Engine:
(3 x 3 x 5 = 45 rules)

Centroid Defuzzification

R
oa

d’
s s

ta
tu

s
D

riv
er

’s
 st

at
us

3 Sample Inputs (out of actual 7 inputs)

Output

Figure 7. Three sample fuzzy inputs (yaw, distance, and angle),
11 fuzzy membership functions, Mamdani rule-engine, and 4 risk
levels as the output of the proposed FIS.

may consider very high, high, average, or low to express a
relative speed.

Based on such approximations, the driver decides on
how much to push on the accelerator pedal, how much to
push the brake pedal, or how to adjust the steering angle to
escape a hazard. In other words, any judgment by an expert
driver is based on such approximations concatenated with
some simple if-then rules in the driver’s mind. The results
are sufficiently accurate to prevent a potential crash.

We suggest that the driving behaviour can be extrapo-
lated by the concept of fuzzy logic [19]. Using Gaussian,
trapezoid, and triangular membership functions, Mamdani
rules, min/max norm operators, and centroid defuzzifica-
tion, we modeled our fuzzy inference system (FIS) based
on the seven existing inputs of driver-road information.

Figure 7 illustrates the overall structure of the module as
a decision-level fusion, based on three sample inputs out of
all the seven inputs.

7. Experimental Results
Using two monocular cameras, one facing toward the

road, and another one facing toward the driver, Figs. 8 and 9
show experimental results for the techniques discussed in
Sections 3, 4, and 5.

By considering the already detected feature points for a
driver’s face, we performed yawning detection as per Fig. 8,
the 4th row, based on measuring mouth openness over a
continued period of time (τ = 1.5 sec):

f(n) =

{
t if d(a,a′)

d(p2,p3)
≥ 0.6 and ∆t ≥ τ

0 otherwise

were n is the frame number, and ∆t is continuous time
elapsed since the first detection of wide-mouth openness
(i.e., f(n) 6= 0). A similar approach is used for “head nod-
ding” detection using the relative length of the nose to the
distance of nose tip to upper lip.

Figure 9 illustrates successful vehicle detection and dis-
tance estimation, even for challenging rainy night condi-
tions, using the proposed hybrid GHaar classifier and in-
verse perspective mapping.
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p3p2
a

a’

b’

b

Figure 8. Pose estimation, yawning, and head-nodding detection.

As discussed in Sec. 6, we have seven inputs for the sys-
tem (yaw, roll, pitch, yawning, head nodding, vehicle dis-
tance, and vehicle angle). In order to reduce the complexity
of the discussion, Fig. 7 only illustrates three selected in-
puts of the system (driver’s head yaw angle, distance to the
closest vehicle, and the angle of ego-vehicle to the lead ve-
hicle). Similarly, Fig. 10, shows the defuzzified output of
the risk-level for only four dimensions out of our 8-D sys-
tem (7 input, 1 output). Looking at any sample point within
the defuzzified surface plots, it can be confirmed that the
calculated risk-level is “quite rational”, depending on the
input parameters about road and driver’s status. Applying
fuzzy fusion for all the available inputs, the whole system
can guide a distracted driver under various high-risk traffic
conditions.

8.66 m

22.34 m

40.65 m

a

cb

Figure 9. (a) Vehicle-detection based on GHaar. (b) Monocular
bird’s eye view image. (c) Distance estimation.

B

t = 51

A

t = 3

Figure 10. Defuzzified surface plot of the risk-level, based on
driver’s attention direction and road situation.

Figure 11 demonstrates the obtained graphs after pro-
cessing two 60-second simultaneous video recordings from
a driver’s face and road conditions. We used the processed
data as sample inputs for the proposed fuzzy fusion system.

In the assessed videos, the ego-vehicle was moving on
the right lane of the road. When defining the angle of de-
tected vehicles, we refer to the right lane of the road. Fig-
ure 11.c, shows three detected vehicles in front of the ego-
vehicle with respect to their distance to the ego-vehicle.

As shown, within the seconds 0-4, the vehicle number
2 (V2) has a very close (apparently high risk) distance of
d ≈ 5m to the ego-vehicle. At the same time (also 0-4), the
driver also has a 2-second distraction toward the left-hand
side of the road with yaw = −30◦ (Fig. 11.a). However,
the graph in Fig. 11.b shows an angle of approximately 42◦

which means V2 is not moving in the same lane as the ego-
vehicle. Based on our empirical tests, vehicles driving in
the same lane cannot have an angular deviation of more than
±6◦. Similarly V1 also travels in the left lane (angle around
20◦). V3 with a small angle of about zero, is in the right
lane (same lane as the ego vehicle). Figure 11.c confirms
a distance of d ≈ 15m, thus no high-risk warning is raised
for V3 (point A in the defuzzified risk plot, Fig 10, top).

On the other hand, in t = 47 to 52, the distance of V3
sharply decreases (e.g., due to sudden braking); V3 is mov-
ing in the same lane of the ego-vehicle; also, at the same
time the driver has an ≈ 3-second distraction to the right-
hand side of the road (yaw ≈ +40◦). In such a case, the FIS
fires one of the high-risk rules to warn the driver, to prevent
an imminent crash (Fig. 10, point B).

Using a Core i7 system with 8GB RAM, the entire sys-
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Figure 11. Processed data for simultaneous driver and road mon-
itoring: (a) driver’s head pose, (b) detected vehicles’ angle to the
ego-vehicle, and (c) detected vehicles’ distance to the ego-vehicle.

tem was able to perform in real-time, at a speed of 21 fps.

8. Conclusion
The paper introduced accurate head-pose estimation by

tackling three important weaknesses of previous related
work: failure of face shape modeling due to asymmetric
light variation, pose divergence due to residual errors of
mismatching a 2D face to a generic 3D model, and slow op-
eration of standard approaches for model refinement (due
to a need of up to 10 iterations). We also proposed robust
vehicle detection and distance estimation. All the acquired
information from monocular cameras contributed simulta-
neously in a real-time fuzzy-fusion system to prevent road
crashes. Experiments were conducted for different subjects,
different driving scenarios, and various lighting conditions
in day and night. The results are robust and promising.
However, such a high-dimensional system may requires fur-
ther evaluations.

References
[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-

chio, R. Moore, A. Kipman, A. Blake. Real-time human
pose recognition in parts from single depth images. in: Proc.
CVPR, 1297–1304, 2011.

[2] X. Zhu, D. Ramanan. Face detection, pose estimation, and
landmarking localization in the wild. in: Proc. CVPR, 2879–
2884, 2012.

[3] T. F. Cootes, G.J. Edwards, C. J. Taylor. Active appearance
models. IEEE Trans. PAMI, 23(6), 681–685, 2001.

[4] J. F. Xie, M. Xie, M., W. Zhu. Driver fatigue detection
based on head gesture and PERCLOS. in: Proc. IEEE IC-
CWAMTIP, 128–131, 2012.

[5] T. Gernoth, K. A. Martı́nez, A. Gooßen, R.-R. Grigat. Facial
pose estimation using active appearance models and a generic
face model. in Proc. VISAPP, 499–506, 2010.

[6] P. Martins, J. Batista. Monocular head pose estimation. in:
Proc. ICIAR, 357–368, 2008.

[7] D. F. DeMenthon, L. S. Davis. Model-based object pose in 25
lines of code. IJCV, 15(1):123–142, 1995.

[8] J. Xiao, S. Baker, I. Matthews, T. Kanade. Real-time com-
bined 2D+ 3D active appearance models. in: Proc. CVPR,
535–542, 2004.

[9] TurboSquid, online 3-D model database, in: www.
turbosquid.com/Search/3D-Models/face.
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