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Effects of Ground Manifold Modelling
on the Accuracy of Stixel Calculations
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Abstract—This paper highlights the role of ground manifold
modelling for stixel calculations; stixels are medium-level data
representations used for the development of computer vision
modules for self-driving cars. By using single disparity maps
and simplifying ground manifold models, calculated stixels may
suffer from noise, inconsistency, and false-detection rates for
obstacles, especially in challenging datasets. Stixel calculations
can be improved with respect to accuracy and robustness by
using more adaptive ground manifold approximations. A com-
parative study of stixel results, obtained for different ground-
manifold models (e.g. plane-fitting, line-fitting in v-disparities or
polynomial approximation, and graph cut), defines the main part
of this paper. The paper also considers the use of trinocular
stereo vision and shows that this provides options to enhance
stixel results compared to binocular recording. Comprehensive
experiments are performed on two publicly available challenging
datasets. We also use a novel way for comparing calculated stixels
with ground truth. We compare depth information, as given by
extracted stixels, with ground-truth depth, provided by depth
measurements using a highly accurate LiDAR range sensor (as
available in one of the public datasets). We evaluate the accuracy
of four different ground-manifold methods. Experimental results
also include quantitative evaluations of the trade-off between
accuracy and run time. As a result, the proposed trinocular
recording together with graph-cut estimation of ground manifolds
appears to be a recommended way, also considering challenging
weather and lighting conditions.

Index Terms—Ground manifold, v-disparity, stixels, monocu-
lar, binocular, trinocular, membership function, obstacle height,
dynamic programming

I. INTRODUCTION

STIXELS are “stick elements”. They have been introduced
in computer graphics in [1], and defined recently a useful

way for describing 3-dimensional (3D) scenes in computer
vision [2], especially in the context of vision-based driver-
assistance systems (VB-DAS).

VB-DAS are integral components of modern cars [3].
Besides cameras, other types of sensors are also commonly
used, defining the more generic advanced driver assistance
systems (ADAS), being a development towards autonomous
vehicles. The designed systems aim at an understanding of
traffic environments in order to improve traffic safety and
efficiency [4], and also for better travel comfort. Examples of
ADAS technologies are auto-braking systems, evasive steering
assistance, or blind spot monitoring.

We briefly define three basic terms used in this paper. The
ground manifold is the estimated surface function for road and
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adjacent levelled areas; a plane defines the simplest model (i.e.
a ground plane [5]); in this paper we consider different surface
functions as models for the ground manifold. The ego-vehicle
is the vehicle in which the system is operating in [6]. The free
space is a region ahead of the ego-vehicle where this vehicle
may potentially (i.e. safely) drive in, for example, in the next
few seconds [7], [8].

In 2009, stixels have been proposed as a medium-level (i.e.
between pixel data and semantic segments) representation for
urban road scenes. This compact representation of disparity
maps aims at simplifying subsequent semantic segmentation
of a given scene. A projectively recorded scene can be mapped
into a top-down view, to be divided into adjacent cells of an
occupancy grid. Cells of this grid are of size w×w measured
in pixels. Disparities, measured for real-world objects within
one cell of this grid, are assumed to be about at the same
depth. A stixel [6] forms now a vertical “stick” above such a
w ×w base cell; in this original definition it is a square-base
thin column on a ground plane (i.e. on a regular occupancy
grid) as shown in Fig. 1.

Fig. 1. Stixels (vertical sticks) describing obstacles: The (original) stixel has
a square base, and goes from a defined ground plane to the top of an object,
located on the stixel’s square base.

A stixel maps pixels that belong to an object (i.e. which
are at about the same distance to the recording camera)
vertically into “columns” [2], sitting on the ground plane.
A stixel is ideally upper-bounded by the top of an object.
See Fig. 2 for such a representation in a real-world scene.
Technical terms used in the caption of this figure (e.g. “cost
image”) are explained later; this figure indicates at this point
a general process of stixel calculation defined by disparity-
map calculation (top-left), base-point detection in the ground
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Fig. 2. Stixel representation of a street scene. Top-left: Disparity map (using an SGM-variant for stereo matching) visualized by applying a color key.
Top-right: Base-point selection by a minimum cut (shown in green) through a cost image. Regions in deep blue show lower costs which are preferred by a
dynamic programming-based optimizer. Bottom-left: Top-point selection by a minimum-cut (shown in green) through a cost image, subject to the base points
(shown in red). Bottom-right: Extracted stixels.

manifold (top-right), followed by top-point detection (bottom-
left), and the resulting stixels (bottom-right). Generated stixels,
also called the stixel world, surround the free space in the
assumed ground plane.

Ground-plane (or ground-manifold) estimation can be ap-
proached using either monocular or multi-ocular vision [10].
Monocular vision also supports ways of distance estimation
(e.g. by inverse perspective mapping); see [11]. There are also
combined monocular-binocular stixel methods; free-space is
estimated by using a single camera only, followed by obstacle
detection using stereo vision [36]. In order to detect free-
space from a single camera, we may employ a time-efficient
lane-based free-space detection method [8]. For example, lane
detection can be performed by using a Hough transform for
straight lines following edge detection; the Hough transform
is a basic method for line extraction [51].

Figure 3 illustrates possible steps: Cropping of a recorded
frame into a defined region of interest (ROI), edge detection
using the Sobel operator due to its “unbiased” definition,
and straight line detection by application of an optimised
Hough transform; the transform is applied recursively, using
optimized (Otsu algorithm [52]) threshold values, until a pre-
defined number of lines is found, or the threshold reaches its
minimum. Finally, that “dominant” pair of lines with the best
correspondence in angular directions is selected for specifying
road contours (i.e. the free-space) in such a monocular vision
approach.

As illustrated by Fig. 3, there remain many spaces which
were not properly estimated regarding free-space or possible
base-points of obstacles; these deficiencies would yield an
early estimation of obstacles.

Robust obstacle segmentation and scene understanding are
key tasks for visual sensors (cameras) in self-driving cars for
being able to interpret dynamic environments. Cameras are
playing a significant role in autonomous driving; they are
capable of providing rich information including distances to

obstacles given in traffic scenes.
Currently emerging vehicle testbeds (e.g. equipped with

sensors along roads, and vehicle-to-infrastructure communi-
cation; see [21] for an example) aim at exact and compar-
ative evaluations of control components designed for driver
assistance or driver-less vehicles. Having different options
for sensors and ground-manifold models, it is, of course,
important to compare efficiencies and possible accuracies of
stixel calculations. Accuracy of stixels requires a disparity
signal of “good” quality; this quality often decreases in cases
of occlusions or textureless image patches [22]. Since noisy
3D points have a considerable impact on ground-manifold
estimation, it is crucial to identify unreliable disparity values
before they are transformed into 3D space and used for stixel
estimation. Unfortunately, these issues are common in traffic
scenes, thus more efforts are needed to improve disparity
signals, also aiming at more reliable free-space estimation
and stixel calculations. Due to road-geometry variations, and
difficulties in recording those properly (e.g. due to weather
conditions or traffic density), there is ongoing work to improve

Fig. 3. Free-space detection using monocular vision, shown for two images
of the KITTI road dataset. Top: Selected ROI (i.e. “middle rows” of a frame
only). Middle: Edge detection using Sobel. Bottom: Detected free-space.
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ground-manifold estimation and stixel calculation. However,
current research as reported in [4], [23], [24] still uses just a
ground-plane for modelling the road-surface; we discuss how
this is prone to errors as road-geometry is not always perfectly
planar.

The reminder of this paper is structured as follows: Sec-
tion II provides at first a brief literature review on work related
to stixel computation. Section III recalls then previously spec-
ified ways of stixel construction, considering the used ground-
manifold specification as a variable subprocess. In Section IV,
a number of methods is deployed to detect a ground manifold
for stixel construction. Section V explains how to use trinoc-
ular recording for stixel calculations. Section VI evaluates
effects of those different ground-manifold models, and of bi-
or trinocular recording. Section VII concludes.

II. RELATED WORK

We briefly discuss work on road surface and stixel extrac-
tion, which are both considered to be crucial steps towards
stixel calculation. Road boundary segmentations are applicable
for modelling the space where an ego-vehicle is potentially
driving in. Detected road boundaries support concepts of
ground versus obstacle segmentation.

Stixel calculation requires depth estimates and is better
approached by multi-ocular stereo vision or other depth sen-
sors; thus it also makes sense to use depth data also already
for the ground-manifold estimation step. Vision sensors and
related data analysis define a core component in ADAS;
A binocular vision system depends on calculated disparity
values for calculating scene depth; disparities are calculated
by implementing stereo matching algorithms [16] on images
obtained by a left and right camera. There might be pre-
processing applied before the stereo matching step, such as
in [17], [18], for enhancing matching outcomes. Results can
be filtered by applying confidence measures; see [19] for
various stereo-matching confidence measures. Stereo-vision
results may also be improved by using a trinocular vision
system rather than just a binocular one; see, for example, [20].

A row-wise histogram of a calculated disparity map D
is known as v-disparity map [5], where v denotes row
coordinates of an image. The analysis of v-disparity maps
(e.g. calculations of lower envelops, or other forms of curve
approximations) defines a common way for ground-manifold
estimation. Noise in disparity maps results in noise in v-
disparity maps. It is challenging to identify an “ideal” curve
in v-disparity space using a curve-approximation method and
v-disparity for binocular vision alone. Stereo vision supports
the use of techniques such as v-disparity representation [5],
disparity analysis [31], or occupancy grid generation [2], [32].

Rapid stixel-based analysis enhances stixel extraction by
having lower computational costs; in [35] a direct stixel
computation is presented by changing the parametrization
from disparity space into a pixel-wise cost volume for speed
improvement. In [36], the authors use deep convolutional neu-
ral networks for free-space detection using monocular vision,
while obstacle detection and stixel calculation is done by using
stereo vision. A fast stixel computation without using depth

maps is proposed in [37]. It supports high-speed pedestrian
detection (at the speed of 200 fps).

Color fusion models compute stixels by using stereo images
(i.e. depth cues) in combination with color appearance. Such
methods have been presented for stixel segmentation [22],
[38], [39]; their implementation can be done by using a
low-level fusion of depth with image signals or semantic
information in the stixel generation process. Scharwächter
et al. employed pixel classification with random decision
forests [38], while in [39] semantic information via object de-
tectors is used for a suitable set of classes. Yet another method
has been presented in [22] to improve stixels using low-level
appearance models in an on-line self-supervised framework.
Recently, joint stixel representations, combining semantic data
and depth, are proposed to integrate both categories in terms
of a joint optimized scene model [25].

Despite the proven effectiveness, such techniques may also
have negative impacts on stixel segmentation [25]. Rapid
stixel-based methods have some drawbacks which are prone
to low depth accuracy, which in turn affects stixel extraction
negatively. Therefore, we consider the use of stereo-matching
confidence maps (see [19] for different options for such maps)
with the aim of improving stixel segmentation. (Effects of
confidence-involvements contributed to the images shown in
Fig. 2.) We focus on a careful analysis for identifying a rec-
ommended way for curve detection (i.e. ground-manifold esti-
mation) in v-disparity space. With promising results achieved
by employing optimization techniques, this paper provides
• a new method, called trinocular graph-cut, for generating

a robust lower envelope in v-disparity space to improve
stixel detection, verified on KITTI data,

• a new ground-truth measure for stixel accuracy evalua-
tion, proposed for the 6D Vision Dataset, and

• an extensive analysis of a low-cost and accurate archi-
tecture for reducing false-positives in stixel estimation
using a model with a reduced number of parameters for
ground-manifold detection.

III. STIXEL REPRESENTATION

A stixel starts on top with a detected upper “end” of an
object and ends at the bottom on the ground plane (or ground
manifold in general, also addressing non-planar surfaces).
Stixels are computed from a disparity map1 D at three stages:

1) Base point detection. Base points are identified by
locating the boundary of free space in the given image.
The boundary is found by first building an occupancy
map from range data above an estimated road manifold,
then solving for an optimal cut separating free space
from the rest of the grid cells in the map.

2) Height segmentation. Foreground pixels are separated
from the background, and an upper boundary (i.e. top
points) of obstacles “resting on the ground” are detected.

3) Stixel extraction. Column-wise obstacles are grouped
and represented by bounding boxes, and depth values

1We adopt a semi-global matching (SGM) algorithm [16] for disparity
calculation.
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of pixels in the same group are integrated to form a
stixel with one unified depth value.

In this section we provide an in-depth walk-through for
this process following papers which introduced stixels as a
medium-level scene representation.

A. Base Point Detection

The first step of stixel construction is to find the bottom of
the closest obstacle for every column [2], [32]. The search is
based on the the free space analysis by means of occupancy
grids [40], which represent the scene as a 2D discrete map.
The use of occupancy grids for free space detection dates
back to 2007 [7]. A probabilistic occupancy grid can be
built by projecting depth data (or, equivalently, disparities)
along the Y -axis of the camera (this axis goes from ground
plane upward) into the ground plane, and then by binning the
projected data using a 2D histogram. The grid can be defined
in either 2D Cartesian coordinates (on the XZ ground plane)
or in polar coordinates. In the latter case, the grid shows a
distribution of pixels in the column-disparity space, which is
also known as a u-disparity map 2 (contrary to the v-disparity
map that is introduced in the following section). An example
is shown in Fig. 4.

Fig. 4. Occupancy map showing the distribution of objects above the road
surface. Left: Computed polar-occupancy grid. Right: After background object
removal. The green curve visualises a column-by-column maximum cut found
by means of dynamic programming. The larger a disparity, the closer is the
object to the camera.

To correctly find the free space from an occupancy map, the
ground manifold has to be estimated to include only obstacles
above the ground to build the grid. Details regarding the
estimation of ground manifold are discussed in Section IV.

By means of an occupancy grid, the free space is efficiently
found using a graph-cut algorithm. The nearest prominent
object is first identified for each column, and the grid cells
behind are occluded. After removing background objects from
the occupancy map, a dynamic programming technique is

2In the original paper (u, v) is used to denote image coordinates; we are
using (x, y) for image coordinates.

Fig. 5. Reconstructed 3D points from a disparity image, road manifold
(green), and obstacle manifold (red) from an occupancy map.

carried out to locate the maximum-cut through the map that
separates free space and the obstacles [7]. For each column
x in disparity map D, the process decides a disparity d,
as illustrated in Fig. 4. Back-projecting such a cut in the
occupancy map to the image-disparity space and subsequently
into the Euclidean space defines an obstacle manifold, as
rendered in red in Fig. 5.

At the end of this stage, a base point is decided for each
column of D by locating the intersection of the obstacle man-
ifold and road manifold (see Fig. 5). The per-pixel distances
between the road manifold and obstacle manifold are then
computed as a cost function for deciding base points (see
Fig. 2 for example). The minimum cut through the cost then
defines the base points of stixels, as represented as a set of
row indices {b1, b2, . . . , bNcol

} where Ncol is the number of
columns of the image domain, and (x, bx) denotes the image
coordinates of base point in column x.

B. Height Segmentation

The height of obstacles, which sit on the ground manifold, is
obtained by seeking an ideal segmentation between foreground
and background disparities. The goal of the stage is to find top
points t1, t2, . . . , tNcol

that together with those base points, that
are found at the previous stage, define the span of obstacles
in a column-wise manner.

In [6], the height-of-obstacle calculation begins with select-
ing membership votes. Briefly, the membership values rely on
the selection of every disparity of each column from the dispar-
ity for its member to the foreground obstacle. A membership
value can be positive if it does not exceed the maximum
distance of the expected obstacle disparity; otherwise, it will
be negative.

The Boolean membership vote brings the challenge to
identify a threshold value for the distance; if this value is too
large then all disparities will be chosen from the foreground
membership, and vice-versa. Therefore, the application of
Boolean membership in a continuous variation is a better
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alternative with an exponential function of the form

M(x, y) =

{
21−δ

2(x,y) − 1, if y < bx

0, otherwise
(1)

where
δ(x, y) =

dx −D(x, y)

dx − Z−1 (Z(dx) +4Z)
(2)

with dx = D(x, bx), the disparity of an obstacle’s base point
in column x, Z as the disparity-to-depth conversion function,
and 4Z as a defined soft constraint range in depth. The
approximated Boolean function is illustrated by Fig. 6.

An example of evaluated membership values is shown
in Fig. 7. Foreground regions end at the bottom of each
contributing column at a base point.

The next step is to decide the boundary between foreground
and background votes from the membership function. For this
purpose, the cost image is computed as follows:

C(x, y) =

{∑y−1
j=1 M(x, j)−

∑bx
j=yM(x, j), if y < bx

∞ otherwise
(3)

A minimum cut, that divides the cost image into upper and
lower parts, is then found by using a dynamic programming
technique as in [6], while maintaining a smoothness constraint.
The cut defines the top points {t1, t2, . . . , tNcol

}. (There are
further options for calculating such a cut; we selected due to
performance results.)

A visualization of a cost image, used for the height segmen-
tation, was already illustrated in Fig. 2. As can be seen, there
are lower costs which show a high likelihood for performing
a foreground-background separation.

C. Stixel Extraction

Stixels are extracted by combining at first base points
b1, b2, ...bNcol

, obtained as outlined in Section III-A, and top-
points t1, t2, ...tNcol

, calculated as per Section III-B; then, a
column-wise grouping technique, proposed in [2], [41], is
carried out. Given w ∈ Z+, a predefined width of stixels,
every w neighboring columns are grouped across the whole
image, resulting in bNcol

w c non-overlapping stixels.
For the i-th stixel we have a set of w base points Bi =

{bxi , bxi+1, ..., bxi+w−1} and a set of w top points Ti =
{txi

, txi+1, ..., txi+w−1}, where xi = (i − 1)w + 1. The
rectangle spanned from column x = xi to x = xi+w−1, and

Fig. 6. Exponential membership function (blue) adopted to approximate the
Boolean membership (red). The width of the function is determined by ∆Z
in (2).

Fig. 7. Evaluated membership of pixels in background (black) and foreground
(white) classes. For pixels below the base points, the membership value
remains undefined (grey).

from row y = min(Ti) to y = max(Bi), defines the scope of
a stixel in the image domain.

Instead of using only base points’ disparities, all the dis-
parities within the scope are integrated to yield a more robust
estimation of the stixel’s depth zi, by means of a histogram-
based regression technique proposed in [2].

Stixel detection represents also a way for ground manifold
estimation; all the base points of stixels can act as interpolation
points for ground-obstacle segmentation using geometry data
with the aim of improving the accuracy. Besides that, a stixel
clearly represents the height of the first obstacle facing the
vehicle along a given viewing direction. Resulting stixels
have been illustrated in Fig. 2, bottom-right. The colours
of the stixels encode the distance to the ego-vehicle. Red-
scale colours represent closer objects while blue-scale colours
represent farther objects.

The accuracy of extracted stixels is directly affected by
the estimated ground manifold. In the following section we
provide details about ground-manifold estimation methods.

IV. GROUND MANIFOLD MODELLING

A ground manifold, found at this stage, may be coded as
a disparity map G where G(x, y) stores the disparity of the
ground at pixel location (x, y). Let D be the disparity map
computed by stereo matching, pixel (x, y) is considered to be
above the ground manifold if D(x, y) > G(x, y) + ε, where
ε > 0 defines a tolerance margin.

A variety of methods has been proposed in literature [5],
[7], [10], [20], [42] to obtain map G. Some methods directly
work on raw data, such as image intensities, disparities, or
3D points, while others apply data projections to reduce the
dimensionality of the raw data. Direct methods and projection-
based methods are reviewed in this section.

A. Plane Fitting

In a typical road scene, the ground manifold is the domi-
nating surface that lower bounds other objects in the scene. In
this case, the manifold can be identified by finding the best-fit
3D surface given to a set of 3D points.

When the ground manifold is assumed to be flat, the
estimation can be approached by means of 3D plane fitting.
In case that the 3D points are derived from a disparity map,
the fitting can be done directly in the image-disparity space.
This is shown as follows.
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Consider a plane a0X + a1Y + a2Z + a3 = 0 in 3D
Euclidean space with plane coefficients a0, . . . , a3 ∈ R. A
point (X,Y, Z) in 3D space is mapped onto an image pixel
(x, y) following the pinhole model

x = fx ·
X

Z
+ xc, y = fy ·

Y

Z
+ yc (4)

where (fx, fy) are the focal lengths, and (xc, yc) is the
principal point.

Two calibrated and horizontally rectified pinhole cameras
introduce a disparity space, where every pixel (x, y) in the
(say) left image is mapped to (x − d, y) in the right image
via d ∈ [0, dmax), the disparity value bounded by dmax. The
disparity-to-depth conversion follows

Z = fx ·
B

d
(5)

where B is the length of the baseline (connecting the focal
points of the two cameras) in world units.

By first substituting (4) into the plane equation, resulting in

a0 ·
Z

fx
(x− xc) + a1 ·

Z

fy
(y − yc) + a2Z + a3 = 0 (6)

and then (5) into (6) producing

a0 ·
x− xc
fx

+ a1 ·
y − yc
fy

+ a2 + a3
d

Bfx
= 0 (7)

the plane in the Euclidean space is now modelled in the image-
disparity space as another plane:

a′0x+ a′1y + a′2d+ a′3 = 0 (8)

in terms of a′0 = (Bfy)a0, a′1 = (Bfx)a1, a′2 = fya3 and
a′3 = (Bfxfy)a2−(Bfyxc+Bfxyc). This way the road plane
can be found without any need of back-projecting a disparity
map into the 3D Euclidean space [43].

An example of a road manifold, modelled in the image-
disparity space using the proposed plane fitting technique, is
shown in Fig. 8.

Fig. 8. Road manifold (green) found using the plane-fitting technique in
image-disparity space.

Fig. 9. Demonstration of v-disparity-based ground-manifold modelling. First
column: Line fitting. Second column: Polynomial-based curve fitting. Third
column: Graph-cut-based curve fitting. Fourth column: Graph-cut-based curve
fitting with enforced monotonicity.

B. Line Fitting

When the height of the road manifold does not change
significantly along the image’s x-axis, the plane model in (8)
reduces to a line:

d = −a
′
1

a′2
y − a′3

a′2
= my + b (9)

which turns road manifold estimation into a line-fitting prob-
lem of seeking the best-fit line model (m, b).

A computationally efficient way to find the best-fit line is
to use a histogram that models the distribution of (y, d) in
2D space. Such a histogram is known as a v-disparity or
row-disparity map [5]. A v-disparity map is computed by
accumulating pixels in the same disparity interval in one row
y, 1 ≤ y ≤ Nrow, of the disparity map:

V (y, d) = card{x : 1 ≤ x ≤ Ncol ∧Q(D(x, y)) = d} (10)

where 0 ≤ d ≤ dmax defines the quantized disparity range for
D in the Nrow ×Ncol disparity map, and Q is a quantization
function. See Fig. 9 with dmax = 60.

In [5], [44], a Hough transform is used to detect the road
manifold in form of a straight line in the v-disparity map.
A more efficient and noise-resistant approach is to locate
the dominating line following a stochastic process known as
random sample consensus (RANSAC) [45]. The process first
selects two bins randomly from the histogram, and a line hy-
pothesis is solved (m̂, b̂). As values in the map define a density
distribution, fitness of the hypothesis can be determined by
summing up all the entries in V (y, d) that are considered in
the line up to a tolerable deviation (i.e. those inlier). Such a
process is repeated for a finite number of iterations and that
hypothesis, which achieves the highest fitness, is considered
to be the dominating line.

As the precision of a line hypothesis is limited by the grid
resolution, one may optionally perform weighted line fitting
based on all the inliers to further improve the estimation.
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C. Curve Fitting

The previously presented line fitting method can only handle
planar road surfaces [31]. For a non-flat road geometry, the v-
disparity map shows a curved distribution of pixel disparities.
In [5], such a curve is approximated by a piecewise linear
function, which is denoted by the envelop of straight lines
corresponding to the k-strongest peaks in the Hough space,
with k ≥ 1 a chosen parameter.

In more recent work [20], [46], the curve is modelled by a
3rd order B-spline or 2nd order polynomial function. Adopting
the polynomial model, the ground manifold estimation prob-
lem is solved by finding the coefficients of a polynomial f(y)
of degree n that best fits the curve in the v-disparity map:

d = f(y) = any
n + an−1y

n−1 + . . .+ a1y + a0 (11)

where a0, a1, . . . , an are the coefficients, and the degree
n > 1 is selected according to accuracy requirements for the
algorithm.

Similar to the line-fitting technique, the fitness of a curve
is defined by summing up all the curve’s containing entries in
V [10].

In order to generate the coefficients of the polynomial
according to the degree specified, we need to compute a
least-square polynomial for a given set of data. Following the
least-square principle, we obtain the parameters a0, a1, . . . , an,
which minimize the total square error:

E(a0, a1, . . . , an) =

m∑
i=1

[yi − P (xi)]
2 (12)

where m ≥ n is the number of samples. The optimal
coefficients can be solved linearly.

D. Dynamic Programming and Graph Cut

Curve models with higher degrees provide flexibility to
model a road manifold in v-disparity space. The degree of
freedom is still limited by the adopted parametric model.
Furthermore, curve models do not guarantee monotonicity
that is often desired, as the depth of a road manifold does
in general not increase as the row index goes from y to
y + 1 (i.e. downward in the image). Following a discrete
formulation, the curve fitting process is essentially a graph cut
problem, which aims at finding a set of quantized disparities
d = {d1, d2, . . . , dNcol

} that minimizes a cost function subject
to smoothness constraints.

Such a cut d divides the v-disparity map into left and right
parts. To find the lower bound of the road manifold, the cost
function can be defined by using a first-order derivative Vy of
the v-disparity map V (i.e. along row y) [47]:

E(d) =

Ncol∑
y=1

Vy(y, dy) + p

Ncol∑
y=2

Θ(dy−1, dy) (13)

where p ≥ 0 defines a penalty for Θ, the smoothness function.
The value of p depends on the scale of the data term. To

ensure the monotonicity of a cut, the smoothness term can be

specified by an asymmetric L1 Potts model:

Θ(di, dj) =

{
∞, if di > dj

dj − di, otherwise
(14)

Based on dynamic programming, an optimal cut can be solved
using the Viterbi algorithm [48].

V. MULTIOCULAR VISION

The idea of the v-disparity space can be generalised to
a multiocular camera set-up. As disparity spaces, derived
from different stereo pairs, are not consistent to each other,
the disparities have to be converted first into a universal
representation (e.g. by using inverse-depth). Alternatively, one
of the disparity spaces may be chosen as a reference such
that all the disparities can be transformed and integrated
appropriately.

In [20] a trinocular implementation is proposed for a gen-
eralization of the v-disparity map for three binocular stereo
pairs defined by three cameras; Fig. 10 shows a trinocular data
example from the KITTI road dataset [49]. Our extension is
based on transitivity error analysis in disparity space (TED)
as introduced in [50]. The approach is briefed as follows.

A disparity map D : Ω → [0, dmax] maps each pixel
(x, y) ∈ Ω from the left image domain Ω to (x−D(x, y), y)
into the right image. A disparity map defines therefore a
warping function M : Ω→ R as follows:

φ(M, D)(x, y) =M (x−D(x, y), y) (15)

Given a collinear m-camera configuration, there are m(m−
1)/2 left-right stereo pairs. The warping function φ can be
used to construct the concatenation of any two disparity maps,
following

τ(Dij , Djk)(x, y) = Dij(x, y) + φ(Djk, Dij)(x, y) (16)

where 1 ≤ i, j, k ≤ m. This concatenation defines the TED-
based disparities.

A TED-based error measure can now be defined as

dik,ijk(x, y) = ‖τ(Dij , Djk)(x, y)−Dik(x, y)‖ (17)

with respect to camera sequence (i, j, k). Function dik,ijk mea-
sures the difference between an explicitly computed disparity
map Dik and the concatenated one τ(Dij , Djk).

To apply TED to build a v-disparity map with respect to
a camera pair, say (0, 2), a trinocular confidence measure is
defined:

Γ(x, y) =
1

1 + ‖τ(D01, D12)−D02(x, y)‖
(18)

and a TED-weighted v-disparity map is constructed following

V (y, d) =
∑

1≤x≤Ncol ∧ Q(D01(x,y))=d

Γ(x, y) (19)

Here, elements with higher TED-based confidence become
more influential in the weighted v-disparity map, which can
then be processed using again the described line fitting, curve
fitting, or dynamic programming techniques.
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Fig. 10. Trinocular confidence and free space. Top row: Trinocular stereo pair from the KITTI road dataset. Bottom left: TED-based disparity. Bottom
middle: Red and blue pixels indicate high and low confidence values, respectively. Bottom right: Calculated free-space (using v-disparity, confidence map,
and proposed trinocular graph-cut).

VI. EXPERIMENTS

We implemented the stixel construction process for four dif-
ferent disparity-based ground-manifold models as introduced
above.3 The base-line stixel method is implemented by map-
ping disparities into occupancy grids. Such a scheme suffers
from shortages highlighted in [6]. Accordingly we selected
four recently discussed models (plane-fit and line-fit [43],
poly-fit [42], and graph-cut [47]) which are mainly dependent
on the v-disparity space. This brings numerous advantages
for ground-manifold detection. It is stated in [6] that working
with original image coordinates, identified by the v-disparity
space, is more practical when including probabilistic densities
into the used model. Using the v-disparity space suppresses
additional quantization artifacts, which is an arising problem
when mapping measurements in Euclidean space into a grid or
voxel space. Line or curve models are (still) dominant when
using the v-disparity space for ground-surface estimation [53],
thus also (still) dominating current stixel calculations [4], [23],
[24].

Following [47], the number of missing stixels is used as
an indicator for showing robustness when using the graph-
cut approach. In this paper we extended the idea of using
the graph-cut approach by including one more camera (i.e.
a trinocular setup) utilizing the confidence map derived from
TED. Furthermore, the experimental evaluation reported in this
paper is more comprehensive than in [47] by also using LiDAR
data and a number of statistical measures (more details later).

The computation of our disparity maps is based on the Com-
puter Vision System Toolbox by calling a wrapped semi-global
block matcher from the OpenCV 3.1.0 library. In this
section we report about the evaluation of detected stixels when
applying one of those listed four ground-manifold models, and
also when deciding either for binocular or trinocular recording,
tested on 3, 861 frames. The evaluation is done using two
widely-adopted datasets in the field, namely Daimler’s 6D
Vision Dataset,4 and the KITTI Vision Benchmark Suite.5

A. Different Ground Manifold Models on 6D Vision Dataset
We evaluate the performance of stixel extraction for the

following four ground manifold models: plane-fitting, line-
fitting, polynomial-fitting, and graph-cut. The extracted stixels

3Implementation is in MATLAB R2017A.
4See www.6d-vision.com.
5See www.cvlibs.net/datasets/kitti/.

are verified on binocular stereo-image sequences downloaded
from Daimler’s 6D Vision website [54].

We applied the verification to all the twelve sequences
which consist of 2, 988 10-bit gray-scale stereo frames. The
first six sequences are from the GOOD WEATHER category,
which present fairly good driving conditions with different
illuminations, a variety of road views, shades, and colourings.
The other six sequences from the BAD WEATHER category
present more challenging conditions such as rain drops, oper-
ating wind-shield wipers, and limited visibility.

In our work we compare extracted stixels with labelled
frames provided by the dataset, and calculate a number of
statistical measures. The positive predictive value (PPV), also
known as precision, is calculated as

PPV =
TP

TP + FP
(20)

where TP and FP denote the numbers of true positives and
false positives, respectively. The true positive rate (TPR), also
known as the recall rate, is defined as

TPR =
TP

P
(21)

where P = TP +FN is the number of positive pixels in the
ground truth. We also calculated the accuracy (ACC) following

ACC =
TP + TN

TP + TN + FP + FN
(22)

where TN and FN denote the numbers of true negative and
false negative pixels.

For those true positive pixels, we further evaluate the
deviation of the disparities of the corresponding stixels against
the ground truth. The root-mean-squares of the errors (RMSE)
are also listed. These results are tabulated in Table I, with the
best true positive rate in each sequence marked in bold.

It is found that all the models show low positive predictive
values, ranging from 0.12 to 0.53. Further investigation reveals
that the reason is due to high false-positive responses. In
many cases, a detected stixel is not annotated in the test
sequence. Although stixel ground truth was provided, they
were annotated using a corridor6 instead of the free-space, as
it was observed during our experiments. An example is shown
in Fig. 11.

6The corridor is a subset of the free-space, and it denotes the region where
the ego-vehicle is expected to drive in [8].
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TABLE I
EVALUATION OF STIXEL EXTRACTION USING VARIOUS GROUND MANIFOLD MODELLING ON THE DAIMLER 6D-VISION DATASET

Sequence Plane-fit Line-fit Poly-fit Graph-cut
PPV TPR ACC RMSE PPV TPR ACC RMSE PPV TPR ACC RMSE PPV TPR ACC RMSE

Seq. 1 0.44 0.69 0.92 1.66 0.42 0.63 0.92 1.52 0.41 0.63 0.92 1.51 0.40 0.64 0.92 1.49
Seq. 2 0.12 0.62 0.82 2.33 0.14 0.74 0.82 2.03 0.13 0.74 0.81 1.99 0.14 0.74 0.82 2.05
Seq. 3 0.47 0.74 0.82 2.45 0.50 0.74 0.83 2.46 0.49 0.68 0.83 2.69 0.50 0.74 0.83 2.53
Seq. 4 0.47 0.89 0.89 3.06 0.51 0.91 0.91 3.03 0.53 0.91 0.91 3.02 0.52 0.91 0.91 3.05
Seq. 5 0.22 0.94 0.80 2.20 0.23 0.95 0.80 2.15 0.23 0.89 0.81 2.40 0.23 0.92 0.81 2.18
Seq. 6 0.34 0.94 0.84 1.99 0.37 0.95 0.86 1.85 0.37 0.90 0.86 1.91 0.37 0.95 0.86 1.85
Average 0.34 0.80 0.85 2.28 0.36 0.82 0.86 2.18 0.36 0.79 0.86 2.25 0.36 0.82 0.86 2.19
Seq. 7 0.28 0.47 0.89 3.36 0.28 0.43 0.90 3.36 0.27 0.43 0.89 3.44 0.29 0.46 0.90 3.41
Seq. 8 0.23 0.80 0.87 4.12 0.24 0.81 0.88 3.93 0.25 0.82 0.89 4.02 0.26 0.83 0.89 3.92
Seq. 9 0.23 0.41 0.88 3.86 0.23 0.26 0.90 3.70 0.22 0.32 0.90 3.66 0.26 0.44 0.89 3.58
Seq. 10 0.26 0.76 0.81 2.90 0.25 0.65 0.82 2.91 0.28 0.78 0.82 2.82 0.28 0.84 0.82 2.82
Seq. 11 0.28 0.76 0.83 4.62 0.31 0.74 0.85 4.22 0.31 0.78 0.85 4.19 0.32 0.81 0.85 4.22
Seq. 12 0.27 0.58 0.91 3.62 0.25 0.34 0.92 3.54 0.28 0.50 0.92 3.53 0.29 0.63 0.91 3.29
Average 0.26 0.63 0.87 3.75 0.26 0.54 0.88 3.60 0.27 0.60 0.88 3.61 0.28 0.67 0.88 3.54

Fig. 11. Annotated ground truth (top) and extracted stixels (bottom) of
the first frame of Sequence 1 from the 6D Vision dataset. The ramp on the
right and the car are not annotated by the ground truth but detected by stixel
implementation (poly-fit).

We therefore use the recall rate (TPR) as the major index
to evaluate the ground-manifold models.

The four tested models perform similar for the
GOOD WEATHER category. The best recall rate average
is achieved for the graph-cut model, which is just 2% better
than the worst case - the plane-fit model. An overall accuracy
around 0.86 is consistently found among all models, and the
RMSE in disparities is between 2.18 to 2.28 pixels.

In the BAD WEATHER category, however, distinctive results
are found. In five out of six tested sequences, the graph-cut

Fig. 12. Left image with window wiper(top-left) and right image (top-
right) - frame number 142 of Sequence 11 (bad weather) from the 6D Vision
dataset. The ground-manifold detection using binocular graph-cut (bottom-
left). (Bottom-right) is showing disparity map for this challenging scene.

model achieves the best recall rate, which is 30% better than
the worst rates in some extreme cases (Sequences 10 and 12);
the graph-cut model is here followed by the poly-fit, plane-fit,
and line-fit models. In general it is observed that the ground
manifold cannot be effectively modelled by the line-fit method
due to severely corrupted disparity maps under bad weather
conditions.

An overall accuracy of about 0.88 is consistently found
among all the models, and the RMSE in disparities is between
3.60 to 3.54 pixels.

TABLE II
RUN-TIME PROFILING FOR STIXEL EXTRACTION USING VARIOUS

GROUND-MANIFOLD MODELS ON THE DAIMLER 6D-VISION DATASET

Category Plane-fit Line-fit Poly-fit Graph-cut
GOOD WEATHER 0.356 s 0.327 s 0.326 s 0.332 s
BAD WEATHER 0.452 s 0.411 s 0.418 s 0.418 s

We also profiled the run-time for each model and show
the average processing time per frame in Table II. The line-
fit, poly-fit, and graph-cut models show similar computational
time costs with a difference of not more than 5 milliseconds.
The poly-fit yields the fastest approach for GOOD WEATHER
because it is insensitive to slope changes which widely exist
in Sequence 1 (see Fig. 11). The plane-fit model is found to
be most time consuming due to the iterative RANSAC process
over a large amount of 3D data.

B. Comprehensive Evaluation on KITTI Dataset

We evaluate the quality of stixels not only for the selected
four ground-manifold models, but also for binocular versus
trinocular recording, using the trinocular data provided on the
KITTI Vision Benchmark Suite [49].

Regarding previously stated challenges in evaluating stixels
using the KITTI dataset [22], we address those by making use
of the Velodyne high-definition 3D laser scanner data provided
by the KITTI dataset. We use those range data as a ground-
truth reference to evaluate the distance values assigned to the
extracted stixels. This comprises of several processes:

1) Generate a disparity map from extracted stixels. The
map contains valid disparities only for pixels belonging
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Fig. 13. Extracted stixels (color-coded by depth) and LiDAR points marked
by white and red dots. Points hitting any extracted stixel are shown in red
and used to evaluate the accuracy of the extraction process.

to a stixel. The map is then converted into a depth map
following Eq. (5).

2) Project LiDAR points into image coordinates. Figure 13
shows some exemplary LiDAR point projections. The
projections associate a subset of LiDAR range data to
the extracted stixels.

3) For each associated LiDAR point, its depth is compared
with the stixel depth map. The signed difference is then
used to evaluate the performance of the stixel extraction
process.

4) As the extracted stixels are in rectangular shape with
reduced spatial resolution, it is often found close to
edges of a stixel that background LiDAR points are
wrongly assigned to a stixel. To exclude such outliers
from the evaluation, we ensure a zero-mean for the error
distribution of each model. Then, we discard LiDAR
points that are outside the interval [−0.5σ,+0.5σ] of
all the range data associated to the same stixel before
calculating the mode (note: not the mean) and the
standard deviation.

We selected 873 trinocular stereo frames from the ROAD,
RESIDENTIAL, and CITY categories, which include cars,
cyclists, pedestrians, trees, and traffic signals. The test se-
quences are listed in Table III, also called for short A =
2011_09_26_drive_0032, B = 2011_09_26_drive_0035,
and C = 2011_09_26_drive_0091 in the following tables.

TABLE III
SELECTED TEST SEQUENCES FROM THE KITTI DATASET

Category Sequence Frames
ROAD 2011_09_26_drive_0032 390
RESIDENTIAL 2011_09_26_drive_0035 137
CITY 2011_09_26_drive_0091 346

Qualitative results are listed in Table IV using a binocular
configuration. We also use frames captured by the third camera
to conduct additional tests on binocular versus trinocular
stixels. Bold numbers indicate the best case per group, and
colored numbers are the best case over all the seven models.
Note that the plane-fit model is not of relevance here. As
illustrated, a negative value means that laser points are in
front of the stixels. Furthermore, as there are many non-flat

objects present in the scene, and many background points
are covered by the extracted stixels, we expect to see large
standard deviation values.

For the ROAD sequence, the trinocular line-fit model
achieves the lowest rate of a LiDAR-stixel error of −5.3cm,
which is 55.5% better than the worst case yielded by the plane-
fit model −11.6 cm. The main reason for this achievement
is due to open-road scenarios which normally correspond
closely to a straight-line in v−disparity space supplemented by
the confidence measure using TED. This is slightly different
compared to trinocular poly and graph-cut which achieve −6.5
and −6.2cm respectively.

In the RESIDENTIAL sequence, the used data show cars
parked on the side of the road, houses, and road junctions.
Based on the experiments, more obstacles (impacting the v-
disparity map) make identifying a curve (using line-fitting or
poly-fitting) more complicated. For this sequence, the trinoc-
ular graph-cut model has superior performance with a lowest
mean LiDAR-stixel error of −10.2 cm. The disparity map
relatively suffers from low-depth in this dataset due to lighting
conditions accompanied with many pedestrians and buildings
in the scenes. The performance of graph-cut is better suited for
cases where there are irregular changes in a piecewise linear
curve.

On the other hand, the binocular poly-fitting model provides
the lowest mean LiDAR-stixel error of −3.5 cm for the CITY
sequence as there are a number of non-flat objects in this
sequence. This defines only a slight difference compared to
the other techniques.

In addition to the statistics for the LiDAR-stixel error, we
also calculate the improvement by the use of the third camera
applying TED-weighted v-disparities (see Section V) as input
for ground-manifold modelling.

As illustrated in Table V, the trinocular graph-cut approach
covers more valid disparities compared to others, and appears
to be insensitive to weather changes. It outperforms the trinoc-
ular polynomial or line-fit methods regarding robustness. The
improvement rate is obvious for the ROAD and RESIDENTIAL
sequences when using the graph-cut model. We notice that
using trinocular cameras, the performance of poly-fit and line-
fit decreases for RESIDENTIAL. This occurs because disparity
values fluctuate roughly at the end of the data sequence
(Frame 100 and onwards) because of having a round-about
in the shown scenes. There are some values missing between
D01 and D12 and this is reflected in values Γ(x, y) since
they are derived from these maps. The graph-cut model pays
more attention to the disparity values, and using a penalization
scheme is thus still able to recover the most relevant values
compared to the ground manifold. The graph-cut model yields
the highest improvement for ROAD and RESIDENTIAL with
the trinocular configuration, and it still has promising results.
This shows that, with such an extension, we can have a
robust ground-manifold detection, resulting in accurate stixel
estimation.

Finally, we summarise in Table VI the average number
of stixels extracted per frame using binocular and trinocular
vision-based ground manifold models. As shown, the binocular
plane-fit performs best on the RESIDENTIAL sequence with an
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TABLE IV
LIDAR-BASED QUALITATIVE EVALUATION [CM] OF GROUND MANIFOLD MODELLING USING KITTI DATASET (BINOCULAR AND TRINOCULAR

CONFIGURATION).

Sequence

Binocular stereo Trinocular stereo
Plane-fit Line-fit Poly-fit Graph-cut Line-fit Poly-fit Graph-cut

Mode Std.dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev.
A -11.6 49.9 -6.6 54.9 -10.2 53.0 -9.5 54.2 -5.3 56.5 -6.5 55.5 -6.2 55.7
B -14.4 54.1 -11.8 53.5 -12.5 54.1 -10.9 52.0 -12.9 53.8 13.0 53.7 -10.2 52.9
C -5.1 47.4 -4.0 48.7 -3.5 50.2 -3.8 50.5 -4.2 48.5 -3.8 49.6 -3.9 50.1

TABLE V
IMPROVEMENT RATE WITH TRINOCULAR GROUND MANIFOLD MODELLING USING KITTI DATASET

Sequence Line-fit Poly-fit Graph-cut
Mode Std. dev. Improve Mode Std. dev. Improve Mode Std. dev. Improve

A -5.3 56.5 19.7% -6.5 55.5 36.3% -6.2 55.7 34.8%
B -12.9 53.8 -10.2% -13.0 53.7 -4.0% -10.2 52.9 6.4%
C -4.2 48.5 -5.0% -3.8 49.6 -8.6% -3.9 50.1 -2.6%

TABLE VI
AVERAGE NUMBER OF STIXELS EXTRACTED PER FRAME IN THE TESTED KITTI SEQUENCES

Sequence Binocular stereo Trinocular stereo
Plane-fit Line-fit Poly-fit Graph-cut Line-fit Poly-fit Graph-cut

A 32.6 32.2 33.8 34.2 35.0 35.3 34.8
B 69.1 27.3 24.3 29.1 29.7 26.7 28.7
C 66.9 71.0 69.5 70.7 71.7 71.0 70.6

average of 69.1% stixels detected. On the ROAD sequence, the
trinocular polynomial-fit method yields the best result with an
average of 35.3% stixels detected. The line-fit model achieved
the best result on the CITY sequence with an average of 71.7%
stixels detected per frame.

VII. CONCLUSION

This paper presented an in-depth analysis for binocular and
trinocular vision-based stixel calculations using four ground-
manifold models across two challenging datasets. For a com-
prehensive comparison, we provided an insight into the accu-
racy of extracted stixels on long-run sequences (for a total of
3, 861 frames); we also provided a brief run-time profiling to
illustrate the performance of these models. The main objective
of the reported research was to present an analysis on adopting
a low-cost architecture (ground-manifold estimation method)
for reducing false-positives in stixel estimations. Also, we
extended the graph-cut model for a trinocular configuration
which yields obvious and robust improvements compared to
other models.

In our analysis we covered the number of cameras required
and the road profile for obtaining accurate stixels. Experiments
show for the binocular case, that the graph-cut model (using
dynamic programming) presents a promising technique to
ensure accuracy of stixels for the 6D vision and KITTI
datasets. The number of true-positives is large when the graph-
cut model is used as a minimisation method for calculating a
v-disparity cut; see results for the 6D vision dataset for the
GOOD WEATHER as well as the BAD WEATHER categories.
As illustrated, the polynomial-fit model shows the fastest run-
time for GOOD WEATHER, while the line-fit model achieves
the fastest run-time for BAD WEATHER.

In order to evaluate the effects for the KITTI dataset, a
comprehensive study was conducted not only for compar-

ing ground-manifold models but also bi- versus trinocular
recording. Results show that the number of generated stixels
highly increases when using trinocular line fitting for ROAD
sequences, and binocular poly-fitting for CITY sequences;
finally, trinocular graph-cut proved to be the best alternative
on RESIDENTIAL sequences. Having especially challenging
scenes in mind, altogether we recommend the trinocular graph-
cut approach.
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